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ON RANDOM MATRICES IT

by
P. ERDOS and A. RENYI

§ 0. Introduction

This paper is a continuation of our paper [1]. Let .#(n) denote the set of all
n by n zero-one matrices; let us denote the elements of a matrix M,€.#(n) by &
(1=j=n;1=k=n). Let p denote an arbitrary permutation p=(py, P2y ..., Pu)
of the integers (1, 2, ..., n) and II, the set of all #! such permutations. Let us put
for each pell,

(0‘ l) 6(p)=81pl -Eng i a’:wp,..'
Thus the permanent perm (M,) of M, can be written in the form
0.2) perm (M,) = 2> &(p)

peil,

Thus each &(p) (pcIl,) is a term of the expansion of perm (M,).

Let us call two permutations p’ = (pi, ..., py) and p” = (pi, ....py)
(p'ell,, p”€ll,) disjoint if p,#pi for k=1,2,...,n. Let now define (for each
M, €.4(n)) v=v(M,) as the largest number of pairwise disjoint permutations
pY, L, p™ such that e(p™)=1 (i=1,2, ..., v). Clearly

(0.3) perm (M) = v(M,)

thus v(M,)=1 is equivalent to perm (M,)=0.

Let us denote by .#(n, N) the set of those n by n zero-one matrices, among
the #? elements of which exactly N elements are equal to 1 and the remaining n* — N
to 0 (0=N=<n?). Let us choose at random a matrix M, y from the set .#(n, N)

with uniform distribution, i.e. so that each of the [’;\;] elements of .#(n, N) has the

23-1

same probability [r;v to be chosen.

Let us denote by P(n, N, r) the probability of the event
v(Mn,J\') =r (!'= l= 21 )

Clearly P(n, N, 1) is the probability of the event perm (M, y)=0.
In [I] we have shown that if

0.4) N,(n)=nlog n+cn+o(n)
where ¢ is any fixed real number, one has
0.5) lim P(n, Ny(n), 1) = e=2¢7",
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This implies that if @(n) tends arbitrarily slowly to + = for n— + == and

(0. 6) Ni(m)=nlog n+w(nn
then
(0.7) lim P(n, Ni(n),1)=1.

In the present paper we shall extend this result, and prove the following
THEOREM 1. For any fixed natural number r, if

(0. 8) Nin)=nlogn-+(r— nloglog n + nw(n)

where w(n) tends arbitrarily slowly to + oo for n— + ==, we have

(0. 9) "“l.i!a"lm P (H, J'Vf (I?I), .i") =1.

Clearly (0.7) is the special case r=1 of (0.9). (0. 5) can be generalized in a
similar way (see Theorem 2). Evidently, the interesting case is when w(n) tends
slower to + <= than log logn.

The method of the proof of Theorem | and 2 follows the same pattern as that
in [1].

In § 2 we formulate — similarly as in [1] — an analogous result for random
zero-one matrices with independent elements, while in § 3 we add some remarks
and mention some related open problems.

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this § Theorem 1. We suppose #=2 as the theorem was proved
for r=1in [1].

Suppose that M is an n by n zero-one matrix belonging to the set .#/(n, Nj(n))
where Nj(n) is defined by (0. 8), and suppose that v(M)=r—1.

Clearly we can delete from each row and column of such a matrix r — 1 suitably
selected ones so that the permanent of the remaining matrix M’ should be equal
to 0. As regards the matrix M’ we distinguish two cases: either the deletion can be
made so that M’ contains a row or a column which consists of zeros only, or not.
Let us denote by Q,(n, r) the probability of the first case, and by Q,(n, r) the proba-
bility of the second case. Clearly if a row (column) of M” consists of zeros only,
the corresponding row (column) of M contains at most r—1 ones. Conversely,
if M contains such a row or column, then clearly v(M)=r—1. Thus Q,(n, r) is
equal to the probability of the event that in M there is at least one row or column
which contains at most r—1 ones. Thus we have

[ n*—n ]
(1. 1) O,(n,r) = 2n 2{; [’:] '.’(:—:2)——) = Ofe~ ") = (1),
. ‘ (N,{n)]
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Let us pass now to the second case. Let k& be the least number such that one can
find in M’ either k columns and n—k —1 rows, or k rows and n—k — 1 columns,
which contain all the ones of M’; according to the theorem of Frobenius (see [2]

and [3]) as perm (M")=0, such a k exists, and lfk'é[—?;-l] because the case

k=0 has already been taken into account (this was our first case). We may suppose
that all ones of M” are covered by k columns and n—k—1 rows (the probability
of the other case when the ones of M’ are covered by k rows and n —k — 1 columns
being the same by symmetry). It follows — as in [1] — that M’ contains a submatrix
C’ consisting of £+ 1 rows and k columns, such that each column of C’ contains
at least two ones. Let C be the cqrresponding submatrix of M. It follows that

n—
5

(1.2) 0,,N=2 3 q

]
k=1

n—1

where ¢, {1 f_!\'_[ ” is the probability of the event that M contains a k+1

by k submatrix C such that each column of C contain at least two ones, and the
submatrix D of M formed by the same rows as C and by those columns which do not
intersect C, contains at most r—1 ones in each row. Evidently

Nf—2k—j

4 n n k+1) {H”'(':_l)[
(1.3) g = [k][r!\'+l][ 2 ] ,%) ”_2
NS

It follows from (1. 2) and by an asymptotic evaluation of the expression at the
right hand side of (1. 3) that

(k+1)(n —k)] [n(n—zc- 1)+ k(k — 1)]
J _

(1.4) 0, (n,r)=o(l).
As
(1.5) 1—P(n, Nf(n),r) = Q,(n, 1)+ Q;(n, 1)

it follows in view of (1.1) and (1. 4) that (0.9) holds. Thus Theorem 1 is proved.
By the same method we can prove the following result, which generalizes
(0. 3) for r=2.
THEOREM 2. If

(1. 6) N,(n) = nlogn+(r—1)nloglogn +cn + o(n)

where r=1 is an integer and c is any real number, we have

Ze=2

(1.7) lim_P(n, N,(n), r)=e -1,
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§ 2. Random zero-one matrices with independent elements

Similarly as in [1] let us consider now random »n by n matrices M = (g;;)
(1 =i, j=n) such that the ¢; are independent random variables which take on the
values 1 and 0 with probabilities p, and (I —p,). It can be shown that the following
result is valid:

THEOREM 3. For any fixed natural number r, put

logn+(r—1)loglog n+ w(n)
1

(2 1 ) Pn =

where w(n) tends arbitrarily slowly to o= and let M be an n by n random matrix
the elements of which are independent random variables, taking on the valiues 1 and 0
with probability p, and 1 —p, respectively. Then the probability of v(M)=r tends
to |l for n—+ e

Note that the special case r=1 of Theorem 3 is contained in Theorem 2 of our
previous paper [1].

As the idea of the proof is essentially the same as that of (0. 9), and the compu-
tation even somewhat simpler, we omit the proof of Theorem 3. Theorem 3 can be
sharpened in the same way as Theorem 2 sharpens Theorem 1.

§ 3. Remarks and open problems

Let us put
3.1) u(n, k) = mm {perm( »)-

VM,
M€ ,a‘f(nl

Clearly pu(n, 1)=1 and p(n, 2)=2: however,for k=3 the question concerning
the value of u(n, k) is open. We have clearly u(k, k)=k! and

- [ 1y
(3.2) ulk, k—1) = k! 2!_3!4_,"4‘_(.}.!)

but the value of u(n, k) for n =k +2 is not known. Clearly for determining (s, k)
it is sufficient to consider those matrices M, which contain exactly k ones in each
row and in each column. As each such matrix is the sum of k disjoint permutation
matrices, i.e. for such a matrix we have v(M,) =k, thus the problem of determining
p(n, k) is the same as the problem raised by Ryser (see [7], p. 77) concerning the
minimum of the permanent of #n by n zero-one matrices having exactly & ones in
each row and each column. Of course for particular values of n and k one can
determine u(n, k) (e.g. u(5, 3) = 12), but what would be of real interest is the asymp-
totic behaviour of p(n, k) for fixed k=3 and n— + ==.
Let us put

(3.3) lim inf il,[_;(_n,_k} = i,

n—seo
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It seems likely that u, =1 for k=3. One reason for this conjecture is that if the
conjecture of VAN DER WAERDEN is true, we have

(3.4) un, k) = % = [E]

. k ; k
Le. = s =1 for k=3. We guess that g, is even larger than =

If in particular M, is the matrix defined by ¢; ;=¢; ;, , =¢; ;=1 (we put
&jm=€;m—n for m=n) and ;=0 if |/—j|=2, then it can be easily shown that
perm (M,)=L,+2 where L, 1s the n-th Lucas number, i.e. the n-th term ofthe
Fibonacci-type sequence

(3.5) 1,3,4,7, 11, 18, ...
and
(3.6) lim VL, = '5;" = %

As regards p(n, k), at present it is known only that

(3.7) |i£ﬂ w(n, 3) = + 0.
n— ca

This was conjectured by MARSHALL HALL and proved by R. SINKHORN [8]. As
a matter of fact, SINKHORN proved u(n, 3) =n for all n=3. Of course (3. 7) implies
lim pu(n, k) = 4+ for k=4.5, ... too.

An interesting open problem is the following: evaluate asymptotically
P(n, n log n+(r — 1)n log log n, r) if r is not constant, but increases together with 7.

There is a striking analogy between Theorem 1 and the following well known
result (see e.g. [4]): If N (n) balls ace placed at random into n urns, and Nj(n) is
given by (0. 8) (with w(n)—~ + =) then the probability of each urn containing at
least r balls, tends to 1 for n— +==. The relation between this problem and that
of § 1 is made clear by the following remark. If we interpret the rows (columns)
of M as urns and the ones as balls, then there are n urns, and each of the N*(n)
.balls™ falls with the same probability 1/n in any of the .,urns”.

In another paper ([5]) we have proved the following theorem (Theorem 1 of [5]):
a random graph I'(n, N) with n vertices where n is even and N =1 nlog n+n w(n)
edges where w(n) — + = for n— + =, contains a factor of degree one with probability
tending to 1 for n — + .

Theorem 1 of the present paper suggests the following problem: does a random
graph I'(n. N) where n is even and

1 —1
N= _nlog n—l—J nloglogn+ w(n)n

2 2
where w(n) - + ==, contain at least r disjoint factors of degree one with probability

tending to | for n--? To prove this, besides the method of [5] the results of [6]
have to be used.
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