ON RANDOM MATRICES II

P. ERDŐS and A. RÉNYI

§ 0. Introduction

This paper is a continuation of our paper [1]. Let $\mathcal{M}(n)$ denote the set of all n by n zero-one matrices; let us denote the elements of a matrix $M_n \in \mathcal{M}(n)$ by ε_{ik} $(1 \le j \le n; 1 \le k \le n)$. Let p denote an arbitrary permutation $p = (p_1, p_2, ..., p_n)$ of the integers (1, 2, ..., n) and Π_n the set of all n! such permutations. Let us put for each $p \in \Pi_n$

$$\varepsilon(p) = \varepsilon_{1p_1} \cdot \varepsilon_{2p_2} \dots \varepsilon_{np_n}.$$

Thus the permanent perm (M_n) of M_n can be written in the form

(0.2)
$$\operatorname{perm}(M_n) = \sum_{p \in H_n} \varepsilon(p)$$

Thus each $\varepsilon(p)$ $(p \in \Pi_n)$ is a term of the expansion of perm (M_n) . Let us call two permutations $p' = (p'_1, ..., p'_n)$ and $p'' = (p''_1, ..., p''_n)$ $(p' \in \Pi_n, p'' \in \Pi_n)$ disjoint if $p'_k \neq p''_k$ for k = 1, 2, ..., n. Let now define (for each $M_n \in \mathcal{M}(n)$) $v = v(M_n)$ as the largest number of pairwise disjoint permutations $p^{(1)}, ..., p^{(v)}$ such that $\varepsilon(p^{(i)}) = 1$ (i = 1, 2, ..., v). Clearly

$$(0.3) perm (M_n) \ge v(M_n)$$

thus $v(M_n) \ge 1$ is equivalent to perm $(M_n) > 0$.

Let us denote by $\mathcal{M}(n, N)$ the set of those n by n zero-one matrices, among the n^2 elements of which exactly N elements are equal to 1 and the remaining $n^2 - N$ to 0 (0 < N < n^2). Let us choose at random a matrix $M_{n,N}$ from the set $\mathcal{M}(n, N)$

with uniform distribution, i.e. so that each of the $\binom{n^2}{N}$ elements of $\mathcal{M}(n, N)$ has the

same probability $\binom{n^2}{N}^{-1}$ to be chosen.

Let us denote by P(n, N, r) the probability of the event

$$v(M_{n,N}) \ge r$$
 $(r=1, 2, ...).$

Clearly P(n, N, 1) is the probability of the event perm $(M_{n,N}) > 0$. In [1] we have shown that if

(0.4)
$$N_1(n) = n \log n + cn + o(n)$$

where c is any fixed real number, one has

(0.5)
$$\lim_{n\to\infty} P(n, N_1(n), 1) = e^{-2e^{-c}}.$$

This implies that if $\omega(n)$ tends arbitrarily slowly to $+\infty$ for $n \to +\infty$ and

(0. 6)
$$N_1^*(n) = n \log n + \omega(n)n$$

then

(0.7)
$$\lim_{n \to \infty} P(n, N_1^*(n), 1) = 1.$$

In the present paper we shall extend this result, and prove the following

THEOREM 1. For any fixed natural number r, if

(0.8)
$$N_r^*(n) = n \log n + (r-1)n \log \log n + n\omega(n)$$

where $\omega(n)$ tends arbitrarily slowly to $+\infty$ for $n \to +\infty$, we have

(0.9)
$$\lim_{n \to +\infty} P(n, N_r^*(n), r) = 1.$$

Clearly (0.7) is the special case r=1 of (0.9). (0.5) can be generalized in a similar way (see Theorem 2). Evidently, the interesting case is when $\omega(n)$ tends slower to $+\infty$ than $\log \log n$.

The method of the proof of Theorem 1 and 2 follows the same pattern as that in [1].

In § 2 we formulate — similarly as in [1] — an analogous result for random zero-one matrices with independent elements, while in § 3 we add some remarks and mention some related open problems.

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this § Theorem 1. We suppose $r \ge 2$ as the theorem was proved for r=1 in [1].

Suppose that M is an n by n zero-one matrix belonging to the set $\mathcal{M}(n, N_r^*(n))$

where $N_r^*(n)$ is defined by (0.8), and suppose that $v(M) \le r - 1$.

Clearly we can delete from each row and column of such a matrix r-1 suitably selected ones so that the permanent of the remaining matrix M' should be equal to 0. As regards the matrix M' we distinguish two cases: either the deletion can be made so that M' contains a row or a column which consists of zeros only, or not. Let us denote by $Q_1(n,r)$ the probability of the first case, and by $Q_2(n,r)$ the probability of the second case. Clearly if a row (column) of M' consists of zeros only, the corresponding row (column) of M contains at most r-1 ones. Conversely, if M contains such a row or column, then clearly $v(M) \le r-1$. Thus $Q_1(n,r)$ is equal to the probability of the event that in M there is at least one row or column which contains at most r-1 ones. Thus we have

(1.1)
$$Q_1(n,r) \leq 2n \sum_{j=0}^{r-1} \binom{n}{j} \frac{\binom{n^2 - n}{N_r(n) - j}}{\binom{n^2}{N_r(n)}} = O(e^{-\omega(n)}) = o(1).$$

Let us pass now to the second case. Let k be the least number such that one can find in M' either k columns and n-k-1 rows, or k rows and n-k-1 columns, which contain all the ones of M'; according to the theorem of Frobenius (see [2]

and [3]) as perm (M')=0, such a k exists, and $1 \le k \le \left\lfloor \frac{n-1}{2} \right\rfloor$ because the case k=0 has already been taken into account (this was our first case). We may suppose that all ones of M' are covered by k columns and n-k-1 rows (the probability of the other case when the ones of M' are covered by k rows and n-k-1 columns being the same by symmetry). It follows — as in [1] — that M' contains a submatrix C' consisting of k+1 rows and k columns, such that each column of C' contains at least two ones. Let C be the corresponding submatrix of M. It follows that

(1.2)
$$Q_2(n,r) \le 2 \sum_{k=1}^{\left[\frac{n-}{2}\right]} q_k$$

where $q_k \left(1 \le k \le \left[\frac{n-1}{2}\right]\right)$ is the probability of the event that M contains a k+1 by k submatrix C such that each column of C contain at least two ones, and the submatrix D of M formed by the same rows as C and by those columns which do not intersect C, contains at most r-1 ones in each row. Evidently

$$(1.3) \quad q_k \leq \binom{n}{k} \binom{n}{k+1} \binom{k+1}{2}^k \sum_{j=0}^{(k+1)(r-1)} \frac{\binom{(k+1)(n-k)}{j} \binom{n(n-k-1)+k(k-1)}{N_r^*-2k-j}}{\binom{n^2}{N_r^*}}.$$

It follows from (1.2) and by an asymptotic evaluation of the expression at the right hand side of (1.3) that

$$(1.4) Q_2(n,r) = o(1).$$

As

$$(1.5) 1 - P(n, N_r^*(n), r) = Q_1(n, r) + Q_2(n, r)$$

it follows in view of (1.1) and (1.4) that (0.9) holds. Thus Theorem 1 is proved. By the same method we can prove the following result, which generalizes (0.5) for $r \ge 2$.

THEOREM 2. If

$$(1.6) N_r(n) = n\log n + (r-1)n\log\log n + cn + o(n)$$

where $r \ge 1$ is an integer and c is any real number, we have

(1.7)
$$\lim_{n \to +\infty} P(n, N_r(n), r) = e^{-\frac{2e^{-c}}{(r-1)!}}.$$

§ 2. Random zero-one matrices with independent elements

Similarly as in [1] let us consider now random n by n matrices $M = (\varepsilon_{ij})$ $(1 \le i, j \le n)$ such that the ε_{ij} are independent random variables which take on the values 1 and 0 with probabilities p_n and $(1-p_n)$. It can be shown that the following result is valid:

THEOREM 3. For any fixed natural number r, put

$$(2.1) p_n = \frac{\log n + (r-1)\log\log n + \omega(n)}{n}$$

where $\omega(n)$ tends arbitrarily slowly to $+\infty$ and let M be an n by n random matrix the elements of which are independent random variables, taking on the values 1 and 0 with probability p_n and $1-p_n$ respectively. Then the probability of $v(M) \ge r$ tends to 1 for $n \to +\infty$.

Note that the special case r=1 of Theorem 3 is contained in Theorem 2 of our previous paper [1].

As the idea of the proof is essentially the same as that of (0. 9), and the computation even somewhat simpler, we omit the proof of Theorem 3. Theorem 3 can be sharpened in the same way as Theorem 2 sharpens Theorem 1.

§ 3. Remarks and open problems

Let us put

(3.1)
$$\mu(n,k) = \min_{\substack{v(M_n)=k\\M_n \in \mathcal{M}(n)}} (\operatorname{perm}(M_n)).$$

Clearly $\mu(n, 1) = 1$ and $\mu(n, 2) = 2$; however, for $k \ge 3$ the question concerning the value of $\mu(n, k)$ is open. We have clearly $\mu(k, k) = k!$ and

(3.2)
$$\mu(k, k-1) = k! \left(\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^k}{k!} \right)$$

but the value of $\mu(n, k)$ for $n \ge k+2$ is not known. Clearly for determining $\mu(n, k)$ it is sufficient to consider those matrices M_n which contain exactly k ones in each row and in each column. As each such matrix is the sum of k disjoint permutation matrices, i.e. for such a matrix we have $\nu(M_n) = k$, thus the problem of determining $\mu(n, k)$ is the same as the problem raised by RYSER (see [7], p. 77) concerning the minimum of the permanent of n by n zero-one matrices having exactly k ones in each row and each column. Of course for particular values of n and k one can determine $\mu(n, k)$ (e.g. $\mu(5, 3) = 12$), but what would be of real interest is the asymptotic behaviour of $\mu(n, k)$ for fixed $k \ge 3$ and $n \to +\infty$.

Let us put

(3.3)
$$\liminf_{n \to \infty} \sqrt[n]{\mu(n, k)} = \mu_k.$$

It seems likely that $\mu_k > 1$ for $k \ge 3$. One reason for this conjecture is that if the conjecture of Van der Waerden is true, we have

(3.4)
$$\mu(n,k) \ge \frac{k^n n!}{n^n} \ge \left(\frac{k}{e}\right)^n$$

i.e. $\mu_k \ge \frac{k}{e} > 1$ for $k \ge 3$. We guess that μ_k is even larger than $\frac{k}{e}$.

If in particular M_n is the matrix defined by $\varepsilon_{j,j} = \varepsilon_{j,j+1} = \varepsilon_{j,j-1} = 1$ (we put $\varepsilon_{j,m} = \varepsilon_{j,m-n}$ for m > n) and $\varepsilon_{jl} = 0$ if $|l-j| \ge 2$, then it can be easily shown that perm $(M_n) = L_n + 2$ where L_n is the *n*-th Lucas number, i.e. the *n*-th term of the Fibonacci-type sequence

and

(3.6)
$$\lim_{n \to \infty} \sqrt[n]{L_n} = \frac{\sqrt{5} + 1}{2} > \frac{3}{e}.$$

As regards $\mu(n, k)$, at present it is known only that

$$\lim_{n \to +\infty} \mu(n,3) = +\infty.$$

This was conjectured by Marshall Hall and proved by R. Sinkhorn [8]. As a matter of fact, Sinkhorn proved $\mu(n, 3) \ge n$ for all $n \ge 3$. Of course (3. 7) implies $\lim_{n \to +\infty} \mu(n, k) = +\infty$ for k = 4, 5, ... too.

An interesting open problem is the following: evaluate asymptotically $P(n, n \log n + (r-1)n \log \log n, r)$ if r is not constant, but increases together with n.

There is a striking analogy between Theorem 1 and the following well known result (see e.g. [4]): If $N_r^*(n)$ balls are placed at random into n urns, and $N_r^*(n)$ is given by (0.8) (with $\omega(n) \to +\infty$) then the probability of each urn containing at least r balls, tends to 1 for $n \to +\infty$. The relation between this problem and that of § 1 is made clear by the following remark. If we interpret the rows (columns) of M as urns and the ones as balls, then there are n urns, and each of the $N_r^*(n)$ "balls" falls with the same probability 1/n in any of the "urns".

In another paper ([5]) we have proved the following theorem (Theorem 1 of [5]): a random graph $\Gamma(n, N)$ with n vertices where n is even and $N = \frac{1}{2} n \log n + n \omega(n)$ edges where $\omega(n) \to +\infty$ for $n \to +\infty$, contains a factor of degree one with probability

tending to 1 for $n \to +\infty$.

Theorem 1 of the present paper suggests the following problem: does a random graph $\Gamma(n, N)$ where n is even and

$$N = \frac{1}{2} n \log n + \frac{r-1}{2} n \log \log n + \omega(n) n$$

where $\omega(n) \to +\infty$, contain at least *r* disjoint factors of degree one with probability tending to 1 for $n \to \infty$? To prove this, besides the method of [5] the results of [6] have to be used.

REFERENCES

- ERDŐS, P. and RÉNYI A.: On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1964) 455—461.
- [2] FROBENIUS, G.: Über zerlegbare Determinanten, Sitzungsberichte der Berliner Akademie, 1917, 274—277.
- [3] KÖNIG, D.: Graphok és matrixok, Mat. Fiz. Lapok 38 (1931) 116-119.
- [4] ERDŐS, P. and RÉNYI, A.: On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 215—220.
- [5] ERDŐS, P. and RÉNYI, A.: On the existence of a factor of degree one of a connected random graphs, Acta Math. Acad. Sci. Hungar. 17 (1966) 359—368.
- [6] Erdős, P. and Rényi, A.: On the strength of connectedness of random graphs, Acta Math. Acad. Sci. Hungar. 12 (1961) 261—267.
- [7] RYSER, H. J.: Combinatorial mathematics, Carus Math. Monographs, No. 14. Wiley, 1965.
- [8] SINKHORN, R.: Concerning a conjecture of Marshall Hall (in print).

Mathematical Institute of the Hungarian Academy of Sciences, Budapest

(Received March 12, 1968.)