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ON RANDOM MATRICES II

by
P . ERDŐS and A. RÉNYI

§ 0. Introduction

This paper is a continuation of our paper [1] . Let #(n) denote the set of all
n by n zero-one matrices ; let us denote the elements of a matrix M„ E"ff(n) by elk
(1 rj_n ; 1--k--n) . Let p denote an arbitrary permutation p=(p 1 , PI, . . •, pn)
of the integers (1, 2, . . ., n) and H the set of all n! such permutations . Let us put
for each p E H,,

(0. 1)

	

E(p) =e lp, * 82p2 . . . Enp, .

Thus the permanent perm (Mn) of Mn can be written in the form

(0.2)

	

perm (Mn) _ _7f c(p)
pEn'

Thus each c(p) (p E H) is a term of the expansion of perm (M.) .
Let us call two permutations p' = (pi, . . ., p„) and p" = (pi, . . ., p„)

(p'EH n , p"EH n ) disjoint if p' 7p', , for k=1, 2, . . ., n . Let now define (for each
Mn E l d(n)) v = v(Mn ) as the largest number of pairwise disjoint permutations
p (1) , . . ., p ( v ) such that e(p (i))=1 (i=1, 2, . . ., v) . Clearly

(0.3)

	

perm (Mn) ~-- v(M„)

thus v(M.) ' 1 is equivalent to perm (Mn) ::-O .
Let us denote by ./#(n, N) the set of those n by n zero-one matrices, among

the n z elements of which exactly N elements are equal to 1, and the remaining n z - N
to 0 (0-<N<nz) . Let us choose at random a matrix M,,,N from the set W(n, N)

z
with uniform distribution, i .e . so that each of the N elements of 11í(n, N) has the

nz - 1same probability
N

	

to be chosen .

Let us denote by P(n, N, r) the probability of the event

v(Mn,N) r

	

(r=1, 2, . . .) .

Clearly P(n, N, 1) is the probability of the event perm (M,,N) ~:-0 .
In [1] we have shown that if

(0.4)

	

N1 (n) = n log n + cn + o(n)

where c is any fixed real number, one has

(0.5)

	

lim P(n, N1(n), 1) = e-2e
n->
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This implies that if o)(-r) tends arbitrarily slowly to - ;

	

for n- +- and

(0.6)

	

N, (n) = n log n + ()(n)n

then

(0.7)

	

lim P
n

	

(T7,N1(17), 1)= 1 .

In the present paper we shall extend this result, and prove the following

TriLOREht 1 . For any fixed natural number r, if

(0 . 8)

	

N; (n) = n log n + (r -1)n log log n + no)(n)

where co(n) tends arbitrarily slowly to + - for n -> + -, we have

(0.9)

	

lim P(n, N,(n), r)= 1 .
n +-

Clearly (0 . 7) is the special case r=I of (0.9) . (0. 5) can be generalized in a
similar way (see Theorem 2) . Evidently, the interesting case is when w(n) tends
slower to + - than log log n .

The method of the proof of Theorem 1 and 2 follows the same pattern as that
in [1] .

In § 2 we formulate - similarly as in [1] - an analogous result for random
zero-one matrices with independent elements, while in § 3 we add some remarks
and mention some related open problems .

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this § Theorem l . We suppose r--2 as the theorem was proved
for r= 1 in [1] .

Suppose that M is an n by n zero-one matrix belonging to the set ~1~1(n, N,*(n))
where N (rr) is defined by (0 . 8), and suppose that v(M) -r-1 .

Clearly we can delete from each row and column of such a matrix r -1 suitably
selected ones so that the permanent of the remaining matrix M' should be equal
to 0. As regards the matrix M' we distinguish two cases : either the deletion can be
made so that M' contains a row or a column which consists of zeros only, or not .
Let us denote by Q,(n, r) the probability of the first case, and by Q,(n, r) the proba-
bility of the second case . Clearly if a row (column) of M' consists of zeros only,
the corresponding row (column) of M contains at most r-1 ones. Conversely,
if M contains such a row or column, then clearly v(M)--r-1 . Thus Q,(n,r)'is
equal to the probability of the event that in M there is at least one row or column
which contains at most r- 1 ones. Thus we have

f n' - n

(1 . 1)

	

Q1(11 , 1-) - 2n -o (Jl

N
nJ-~ = 0(e-w(t'» = o (,) .

kNr(n)1

r
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Let us pass now to the second case . Let k be the least number such that one can
find in M' either k columns and n-k-1 rows, or k rows and n-k-1 columns,
which contain all the ones of M' ; according to the theorem of Frobenius (see [2]

and [3]) as perm (M') =0, such a k exists, and 1 k

	

n. -1
2 ~ because the case

k=0 has already been taken into account (this was our first case) . We may suppose
that all ones of M' are covered by k columns and n-k-I rows (the probability
of the other case when the ones of M' are covered by k rows and n-k-1 columns
being the same by symmetry) . It follows - as in [i] - that M' contains a submatrix
C' consisting of k + 1 rows and k columns, such that each column of C' contains
at least two ones . Let C be the cgrresponding submatrix of M . It follows that

(1 .2)

ON RANDOM MATRICES, H

Qz(n r) ` 2

	

qk
k -= t

71- 1
where qk (I 1-k

	

-2

	

is the probability of the event that M contains a k + 1

by k subm
l
atrix C such that each column of C contain at least two ones, and the

submatrix D of M formed by the same rows as C and by those columns which do not
intersect C, contains at most r-1 ones in each row . Evidently

(1 .3)

((k+l)(n-k)1 (n(n-k-1)+k(k-1)l

qk

	

[nj
l

n j [k+ IIk (k+>)(r-1)

	

j

	

Nr - 2k-j
k k+1

	

2

	

, o

	

(n~l
lN )Y

[t follows from (1 . 2) and by an asymptotic evaluation of the expression at the
right hand side of (1 . 3) that

(1 .4)

As

(1 .5)

	

1 - P (n, Nr(n), r) = Q, (n, r) + Q2(n, r)

Q2(n, r) = o(l) .

it follows in view of (1 .1) and (l . 4) that (0. 9) holds. Thus Theorem 1 is proved .
By the same method we can prove the following result, which generalizes

(0 . 5) for r - 2 .
THEOREM 2. Ij

(1 .6)

	

N,(n) = nlogn+(r-1)nloglogn+cn+o(n)

where r 1 is an integer and c is any real number, we have

2e-

(1 .7)

	

hm P(n, Nr (n), r) = e (r -1 )' .
n
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(2.1)

§ 2 . Random zero-one matrices with independent elements

Similarly as in [1] let us consider now random n by n matrices M=(E ij)
(1-_i, j-_n) such that the E i; are independent random variables which take on the
values 1 and 0 with probabilities pn and (1 -p n) . It can be shown that the following
result is valid :

THEOREM 3 . For any fixed natural number r, put

pn =
log n + (r - 1) log log n + w(n)

/1

where w(n) tends arbitrarily slowly to +- and let M be an n by n random matrix
the elements of which are independent random variables, taking oil the values 1 and 0
with probability p„ and 1 -p„ respectively . Then the probability of v(M) --r tends
to I for n -- + - .

Note that the special case r = 1 of Theorem 3 is contained in Theorem 2 of our
previous paper [1] .

As the idea of the proof is essentially the same as that of (0 . 9), and the compu-
tation even somewhat simpler, we omit the proof of Theorem 3 . Theorem 3 can be
sharpened in the same way as Theorem 2 sharpens Theorem 1 .

§ 3. Remarks and open problems

Let us put

(3 .1)

	

p(n, lc) = min (perm (M,)) .v(M'„)=k
M,,C U(n)

Clearly p(n, 1)=1 and p(n, 2)=2 ; however,for k--3 the question concerning
the value of p(n, k) is open. We have clearly p(k, k)=k! and

(3.2)

	

p(k, lc- 1) = k! Z i - I
3!

	

k!+ . . . + (

I)k~

but the value of p(n, k) for n--k+2 is not known. Clearly for determining p(n, k)
it is sufficient to consider those matrices Mn which contain exactly k ones in each
row and in each column . As each such matrix is the sum of k disjoint permutation
matrices, i.e. for such a matrix we have v(M,,)=k, thus the problem of determining
p(n, k) is the same as the problem raised by RYSER (see [7], p. 77) concerning the
minimum of the permanent of n by n zero-one matrices having exactly k ones in
each row and each column . Of course for particular values of n and k one can
determine p(n, k) (e .g . p(5, 3)=12), but what would be of real interest is the asymp-
totic behaviour of p(n, k) for fixed k ~-- 3 and n - + ~ .

Let us put

(3.3)

	

lim inf j p(n, k) = pk ,
n-
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It seems likely that µk > l for k 3 . One reason for this conjecture is that if the
conjecture of VAN DER WAFRDEN is true, we have

1."n!

	

k n

(3 .4)

	

µ(n, k) ~	
nn

	

e

i .e . u, k
> 1 for k -3 . We guess that uk is even larger than k .

e

	

e
If in particular Mn is the matrix defined by Ej,j=E,,i+I=a~, ;_I=1 (we put

for in ::-n) and ej,=0 if 1l-fi-- 2, then it can be easily shown that
perm (M„) = L„ + 2 where L„ is the n-th LuCAS number, i .e. the n-th term of the
Fibonacci-type sequence

(3 . 5)

	

1, 3, 4, 7, 11, 18, . . .

and
n,

(3 .6)

	

hm )/L„ _	 > -

n_+_
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IS + 1

	

3
2

	

e

As regards µ(n, k), at present it is known only that

(3 . 7)

	

lira p(n, 3) _ + ~ .
n +-

This was conjectured by MARSHALL HALL and proved by R . SINKHORN [8] . As
a matter of fact, SINKHORN proved u(n, 3) _-n for all n _- 3 . Of course (3 . 7) implies
lira run, k) _ + - for kc = 4, 5, . . . too .

An interesting open problem is the following : evaluate asymptotically
P(n, n log n + (r - 1)n log log n, r) if r is not constant, but increases together with rr .

There is a striking analogy between Theorem 1 and the following well known
result (see e .g . [4]) : If N; (n) balls are placed at random into rz urns, and N,*(n) is
given by (0. 8) (with co(n) --> + -) then the probability of each urn containing at
least r balls, tends to I for n --> + - . The relation between this problem and that
of § 1 is made clear by the following remark . If we interpret the rows (columns)
of M as urns and the ones as balls, then there are n urns, and each of the N,*(n)
„balls" falls with the same probability 1/n in any of the „urns" .

In another paper ([5]) we have proved the following theorem (Theorem 1 of [5]) :
a random graph F(n, N) with n vertices where n is even and N= i n log n +n (o(n)
edges where w(n) -- + - for n - + -, contains a factor of degree one with probability
tending to 1 for n -> + - .

Theorem 1 of the present paper suggests the following problem : does a random
graph F(n, N) where n is even and

N=-
1
nloan+j-

2 1
nloglogn+w(n)n

where ()(n)- +-, contain at least r disjoint factors of degree one with probability
tending to 1 for n > ~? To prove this, besides the method of [5] the results of [6]
have to be used .
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