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ON THE SOLVABILITY OF SOME EQUATIONS IN DENSE SEQUENCES OF INTEGERS

P. ERDOS, A. SARKOZI AND E. SZEMEREDI

In a previous paper [1], making use of a simple combinatorial result of Kleitman [4], we showed
that if @, <a, <... is an infinite sequence of integers for which there are infinitely many x satisfying

the inequality Ax = Eﬂ-if’f 1/a; > c (logx)/(log log x)"2, then the equations (a,, af) =a,r<i<j,

[“£I~ % 1] =% r'.l < jl <ry, have infinitely many solutions. We also showed that this theorem cannot

be improved in a specific sense, namely that the constant ¢ cannot be replaced by an arbitrarily

1
small constant, More precisely, we constructed a sequence satisfying the hypothesis

)] '
D 1> epz/(log log x)'s, (1)
B{gx
but nevertheless the equation [ail’ a; 1] = a"l’ 51 <f1 €Ty s netsolvabie:
In the present paper, ¢, ¢ 12 €000 will denote absolute constants; p denotes primes; P(n) is
the greatest and p(n) the smallest prime factor of n. Denote the sequence @, <a,<-er by A.
We shall say that the sequence u, <u, < ... possesses property 1 if the equation u;q = iy

p(g) > P (u;) has no solutions.

In this paper we shall show that the behavior of the equation (a,, a].] = a, is completely different
from that of the equation [a;, a;;.] =a.
We shall prove the following theorem.
Theorem. Let a; <-.-. be a sequence of integers for which the equation
(ai, @5) = ar, r<<i<j, (2)

has no solutions. Then

1 (3)
Z a; log a; <e

We shall make a few preliminary comments. By means of partial summation, we easily find from
the theorem in our paper [2] that if equation (2)has no solutions, then for every % we have the
equality

liminf 3 /2 \"=0
oae L I log, « )
r=2
(logrx denotes the rth iteration of the logarithm).
Therefore relations similar to‘(])cannot exist in this case,

The sequence b] <+-+ is called primitive if there exists no number dividing all the remaining

terms of the sequence. It is well known [3] that for every primitive sequence we have the inequality

1
2 Bilog b % (4)

* Editor’s note. The present translation incorporates suggestions made by the authors.
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and also (see [2]) the equation

; ' log » =
Mg Y =< (_g_) —0 ”
= h;c bi \(log log z)" ? (5)
T

and this relation cannot be refined.

We prove that if ¢, <a, <-:. is an infinite sequence for which equation (2) is not solvable, then

: A § log = 1
- % o \Taieaa] =0 ©)
The proof of equation (6) is rather complex, and we shall come back to it later. The relations (3),
(4), (5), and (6) prompt the following question. Let bl < bz < «++ be an infinite primitive sequence.
Do there exist a constant ¢ > 0 and a sequence a, <:-- for which equation (2)is not solvable and
a, < bg? We are unable to answer this question.
Now let us consider the proof of the theorem. We shall make use of the following lemma due to

Alexander.

Lemma 1. Let a; < B, <ene be a sequence with Property 1. Then
) 1 =
Zil u; log g ~ta (7

If ui‘fh uj (i.e. if the sequence Uy <ty <ese is primitive), then the inequality (7)is proved in
[3]. The proof of Lemma 1 resembles the proof given in [3], but for the sake of completeness we shall
sketch it here. We easily see that condition I means (see [3]) that ug=uq “Lplg > P(ui),
plg") > P ).

Making use of the sieve of Eratosthenes, we conclude that the number of integers u,q <x,
plg)>Pu 1], is greater than

[I (1——)—2% ®)

From (8)we easily obtain the inequality
A f 1
> I (1—=)/m<t, ©)
i p<Py)
whence, with the use of Mertens’ theorem,
1
[I (1 = —p") <c¢/logy,
p<y
follows the proof of our lemma.
We now define a subsequence A4 (a;) of the sequence A in the following manner: a; belongs to
Ala,) if a; is the largest a for which the equation a;=aq,p (g) > P(a,), is solvable. Let 4 "bea

subsequence of the sequence A which is not included in any subsequence A(ai). Clearly

A=4" Ui:] A (a;-). Therefore
%) 1 5 | 1 |
1 w | A
— = ) ——+ > - - (10)
= ay log ay ayin A ay log ay, -"JlakinA(u.i ) ay log ay

Evidently the subsequence A’ possesses Property I. Thus, by virtue of Lemma 1, we have the
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inequality

5 1
— < 0y,
o By gy < (1)

We now prove Lemma 2.
Lemma 2.

1 1 é

i a " = .
apin Afa,) x10g a; ai P (a;)"

It is easily seen (ql < 9, < ..+ ranges over the set of all primes) that

1 ™
S L] (1+

1 \ﬂ f‘lngqm _
WP et et ey 553 T) <2 =

m--l ’!’m

Our Theorem 1; therefore, follows immediately from (10), (11), and Lemma 2. To complete the
ptoof it remains only to prove Lemma 2. Let aiqi, r=1,+"+5p (qﬁ”) = P ) be integers of the sub-
sequence A (“i)' Clearly, the subsequence q(i) possesses property I If it d1d not, and if q“)/q“}
is an integer satisfying the inequality p (q“‘}/quz)] > Plg “}]. then a, ({r (which belongs to thc sub-
sequence A(a )) can be written in the form a,q, P(E}) > P(a!) a = aqu_” i q“} /qr” =g, in
contradiction w1th the maximality of a;.

We now show that there exist no two coprimes g(”. In order to see this, we first of all make use
of the fact that equation (2) has no solutions. Namely, assuming that (q(”, q(‘ )) = 1, we find
(a q(‘), a, q(”) = a;. In other words, equation (2) has a solution, which contradlcts our assumption.

Lemma 3- Let the sequence q, <--- possess Property 1, (g, q}.) #1, plg,) >t Then
The correctness of Lemma 2 follows immediately from Lemma 3, Since
N 1 oy 50 1 1 < 1

el agloga, — < aj qE,iJ log a; qg_” STy ‘:J

—= <_ epfap (a)':
a, in A(ui)

¢t log ¢V
Thus there remains only to show the correctness of Lemma 3. It is highly probable that Lemma 3
is not the strongest one possible and that the expression FS,.HC % may be replaced by Cs /t.
For the proof of Lemma 3 let us first assume that there exists an i for which
g 1 1 (12)
2 - S
piay $

Since there =xist no two coprimes ¢, then every ¢" must be divisible by at least some p, where

p|gi- Hence
Z 7 h,r,gr <= Z

pla;

1
q,,,lc'gq, - (13)

where the stroke indicates the summation ranges over all ¢ such that p |q. The sequence ¢ /p

clearly possesses Property I (except for the fact that one of the numbers ¢,/p may be unity). Hence,

5

by virtue of Lemma 1,

2 10% <14 eca (14)
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From inequalities (12), (13), and (14), we find
Y‘____ < J_CS)Z <1+Ca

~ g, lozq,
pla;
which proves the lemma.
To complete our proof let us now assume that inequality (12)does not hold for ¢ . Let [ be an
integer and x > x (1) large. Consider the integers which do not exceed x by ¢, (¢), where all the
prime factors of ¢ are larger than ¢ . Since the sequence g, possesses property I, we find, just as in

Lemma 1, that the integers
Gy P="1.2, .y by S Bl (15)

are distinct. Denote the numbers of the form (15) by Url, uz, ey Urs - We find‘ by virtue of Mertens'

Theorem and the sieve of Eratosthenes, that

s = +01))2£ I1 (1——)>(‘r(‘7‘7)+0(,;:)_ (16)

—1 I p=P(q,) < g, lozq

Clearly, all the prime factors of u are greater than ¢, and since inequality (12)does not hold, we have

ot =S

plu,
Hence on the one hand

Z 2 > % ) (17)

i=1 p] 'u.

and on the other

5 5L <22 =5 D S (18)

i=1 plu, u= 19}) ;p>t

Thus from inequalities (17)and (18) we find the inequality

s<az[th. (19)
Therefore, inequalities (16) and (19) lead to the inequality
t

2 o (20)

r=1
and since the last inequality holds for every [ the proof of Lemma 3, and therefore of the theorem, is
complete.
Our proof does not make use of the combinatorial result of Kleitman [4]. We do not know how to

deal with the equation [a,, a-f.] = a_ without making use of Kleitman’s result.
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