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wind

Let n= Il pj". A well known theorem of Hardy and Ramanujan states:

§w]

v(n) = (1+o0(1))log log # holds for all » if we neglect a sequence of density 0
[5]. Define for 2<j<wv(n)

i=1
@i __ g T3(m)
}}IP;‘—P;‘ .

I had often occasion to use the fact that yj(n) is “usually” O(1) [2]. Put

max 7j(n) = P(n).

1=4=v(n)
In the present note we shall prove the following :
TueoreMm 1. For almost all integers n
(1) Pin) = (1+0(1)) log; n/log, n.

The phrase “almost all integers” means that (1) holds for all » if we
neglect a sequence of integers of density 0, logk # denotes the k-fold iterated

logarithm.
We will also outline the proof of the following further results:

TuroreM 2. There is a continuous strictly increasing function ¢(c), ¢(0) =0,

@(o0) =1, so that for almost all integers n

1

'log: n T:(‘?ﬁal - 99(6)

In other words there are (¢(c) + 0(1))log, # values of j for which rj(n)<c.

TueoreM 3. The density of integers for which

min rj(n) <c/log. n
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is ¢(c) where $(0) =0, ¢() =1 and ¢(c) is continuous and strictly increasing.
Put p; = p;j+1. In a previous paper [3]I proved then the density of integers

n for which

(2) min 7 <1+c¢/logan
1=4=v(n) -1

equals 1—exp( —c)(expz=¢"), also the density of integers n for which

(3) max 7;>c¢ log: n

1=3=v\n)-1

is 1—exp(~1/¢). I further proved [4] that for almost all n

viml=1

(4) 33 7= (1+0(1)) log: n logs n.
=

It would be easy to deduce from Theorem 2 and from the result of de Bruijn
[1] that for almost all =

vin)-1

(5) > rin) = (1+0(1)) log: HS:‘P(C). (S:gr{c) & m)

J=1

Now we prove Theorem 1. To prove our Theorem we have to show that
for every >0 the density of integers for which

(6) P(n) > (1 +¢) logs n/logu n

is 0 and the density of integers for which

(7) P(n) < (1—e) logy n/logyn

is also 0. First we prove (6). Because of the slow growth of logs n/log:n it
clearly will suffice to show that the number of integers n<x for which

(8) P(n) > (1 + %) logs x/logy x

is o(x).
First of all we observe that the number of integers »< x which are divisible
by a square k*>c¢ is less than

"% 2x
Fl 1<%
Hence by (9) we obtain by a simple argument that (8) will follow if we show
that for every >0 for all but o(x) integers n<x we have for every 2<j<»(n)
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(10) l']p,-<exp((1+ :) (log: x/log.x) log p),-).

i<j
Put T= (1 + %)logs x/logsx. (10) will easily follow from

LemMA 1. Let k>kole) be sufficiently large. Then the number of integers

n<x which for some I=0 have more than T prime factors p satisfying

(11 * < p<o¥"
is o(x).

Assume that the Lemma has already been proved. Let » be an integer
which has for every /=0 not more than T distinct prime factors satisfying (11).

For these integers we clearly have for every 2<j<u(n)
Iy <II( }”’I)T =p}”””‘”’"<exp((1 4 i—)log p;i logs x/log, x)
i=j i=0

for k> ky(e), hence (10) is proved.
Thus to prove (10) we only have to prove Lemma 1. By the well known
theorem of Mertens 3)1/p=loglog y+¢+0(1/logy) we have (in 332¥ < p<
r=y

(12) $1/p<cl log k.

The number of integers »n <x which for a given / have more than T

distinct prime factors satisfying (11) is by (12) clearly less than

x(Su1 YT <xle log R/ T <
(13) ecilog b \" ¥
x( T ) < (logy x)t+si10”

for x>x(e). Since 2¥<x we have at most log» x choices for [/, thus the number
of integers n<x which for some / have more than T distinct prime factors
satisfying (11) is by (13) less than x/(log: x)**" = 0(x), which proves Lemma 1
and hence (10), (8) and (6) are proved.

By the same method we can prove that for every ¢>0 and >0 there is
an /= [(e, y) so that the density of integers » for which

ri{n) > (1 + ¢) logs pj/log: p;

holds for more than / values of j is less than 7.



620 P. ERDOS

The proof can be easily deduced from the fact that for every % the series
(A(p) =[(1+¢)logs p/log: p1)

(14) ity S 1P /Ap))

¥ p plikcgep

converges. The proof of (14) is similar to that of (13).
To complete the proof of Theorem 1 we now prove (7). Instead of (7)
we will prove that for all but o(x) integers n <x

(15) P(n)>(1—¢)logs x/log x.

Let » run through the integers of the interval (%log», x, log: x) and denote
by I the interval

r+l

1 A {
exp((l + Egm:) ) exp\(l + lt)_g._x) )
To prove (15) it will suffice to prove the following:

LemMma 2. For all but o(x) integers n<x every n has at least
[(1- —;—)Iogax!logq xj= Ty

distinct prime factors in some I,.
(15) immediately follows from Lemma 2. Let » have at least 7| distinct

prime factors in I and let p; the greatest p/n in I,. Then clearly for sufficiently

large x

Hps ~ p,‘-,-i-lm—l,rlm x) > pl_l-l]lWJ x/loge
J 7
<j

which proves (15).
Thus to prove (15) (and hence to complete the proof of Theorem 1) we
only have to prove Lemma 2. First we need three further Lemmas. Denote
{r}

by a’, i=1, .. the integers which are the product of 7 distinct prime
factors of I,. We have

Lemma 3. Put (log(1+ 1/logix))™/Ty! = F.x). We then have

(16) S1/a” = (14 0(1) ) F(x).

By the theorem of Mertens we have
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1
(17) S 1/p=log(1+1/logix) + of s )-
Denote by b;",j=1, ... the integers composed of s distinct primes in I,

(for s= T, the b} are the a{”"). Clearly

(18) 3 1= 3

1
brs+1 S+I E';

thJ

where the dash indicates that the summation is extended over the p in I, for
which p+b;". Clearly by (17) we have

(19) E’—}J- =log(1+ 1/log.x) + o(1/log, x).

Lemma 3 follows from (18) and (19) by a simple computation.

LemMA 4. Denote by A.(x) the number of integers which are divisible by at
least one ai”'. We have

Ar(x) = (14+0(1)xF(x).

Clearly by Lemma 3
(20) Arfx){zl—]’xz o = (1+o()eFG.

Denote on the other hand by Bi(x) the number of integers n<x which are
but of no other ;. Clearly by (17)

multiples of a}”’

X X
(21) Biwz[- % o ]- ,,12“‘1,[%?7] = @+o) 2
Further clearly
(22) A () =3 Bi(x).

From (21), (22) and Lemma 3 we have

(23) Ar(x)b(1+0(1))x2 o =(1+0(1))xF(x)

(20) and (23) proves Lemma 4.

Denote by A;, r,(x) (7,%7) the number of integers n<x which are divisible

ira {ra)

by at least one 4;"" and at least one a;

LEMmMA 5.
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Arr(®) = (1+ 0(1) xF(x)%

The proof of Lemma 5 is the same as Lemma 4, (we use (a'", a/*) =1

and a{"'a/" = 0(x)) and can be left to the reader.

Now we are ready to prove Lemma 2. Denote by f(n) the number of #’s
for which » is divisible by an @{”’. We have to show that for all but o(x)
integers n<x, f(n)>0. In fact we shall prove more. We shall show that for

all but o(x) integers n<x (put% (loglog x). F(x) = @(x))

(24) i) = (1 +0(D) 5 (loglog . F(x) = (1+0(1)G ()

(24) implies by a simple computation that for almost all n, f(n) » . We
prove (24) by Turan's method [6].
We evidently have

z x

(25) él (Fn) —®(x))?= D f(n)*—=26(x) D f(n)+28%(x).

n=1 n=1

Now clearly by Lemma 4 and the definition of &(x)
(26) }L:f(n)=2A,,(x)=(1+o(1))x@(x).
Further by a simple argument we have from Lemma 5

(27) éf’(n) =23V Arr(®) + 2 A2 = (1 +0(1))2G*(x).

ri<rg r

Thus from (25), (26) and (27)

(28) SUF) = B()? = o(x(B (),

n=1

(28) immediately implies (24) (using Tchebicheff’s inequality). This completes
the proof of Lemma 2 and Theorem 1.

By somewhat more trouble we could prove the following sharpening of
Lemma 2: Let Ci,...,Cs, s=o0(x) be classes of integers. Assume that if a
and & belong to different classes then (@, b) =1. Denote by gi(x) the number
of integers n<x which are divisible by at least one integer of C; and assume
that

]
lim + Dlgi(x) = o0,
1=1

m=
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Then all but o(x) integers n<x have a divisor from at least one C;, 1<i<s.
The proof is more difficult than that of Lemma 2, and I have to use Brun's
method. The difficulty is that the analog of Lemma 5 breaks down.
We only outline the proof of Theorem 2.

LeMMA 6. There is a continuous strictly increasing function ¢(c¢), ¢(0) =0,
¢(o) =1 so that to every ¢>0 there is a j, for which for every fixed j> jo the
density of integers n with vj(n) >c differs from ¢(c) by e.

The proof of Lemma 6 can easily be deduced from the results of N. G. de
Bruijn [1] and is not difficult.

Theorem 2 follows from Lemma 6 by the methods of probabilistic number
theory but the proof is not quite simple, we have first to show that if j'—j is
large then the values of r;(#) and 7;(»n) are nearly independent and then Tur4n's
method [6] can be applied without much difficulty.

Theorem 3 can be proved similarly as (3) but the proof is more complicated.

By using the results of de Bruijn one could sharpen Theorem 1 and one
could perhaps obtain an asymptotic expansion for P(n) valid for almost all
integers, but I have not even determined the second term of this hypothetical
asymptotic expansion.
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