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ON THE DISTRIBUTION OF DIVISORS OF INTEGERS

IN THE RESIDUE CLASSES (MOD d) .

By

P. ERDOS (Haifa)

Throughout this paper k and 1 will denote integers satis -
fying Oil<k, (1, k) = 1 . Denote by ft ; k, 1) the number of in-
tegers n<x which have a divisor t satisfying t =- I (mod k) and
F(x ; k) denotes the number of integers n< . •_' wliich have a divi-
sor =- 1 (mod Ic) for every 1 . Clearly F(x ; k-, 1) . It is easy
to prove that for fixed k

F(x ; k)= .r+ o(,-) .

We obtain very much snore difficult questions if k tends to
infinity together with x . NVe are going to prove the following [1] .

Theorem 1 . Let F>O be fixed butt arbitrary, Ic<2 E )
'°°'°gY

Then uniformly in k .

(1)

	

F(x ; k) = a'+o(x) .

In other words if k<"( ' ` ) ' °g ' °g
"
then almost all numbers

have a divisor in every residue class 1 (mod k) . A -,vell known
theorem of Hardy- Ramanuian [3] states that for almost all
numbers n<x

d(n)<2('+o(') )
og log

(2) easily implies that F(x, h)=0(x) if k>-')(1 +) log log -~ • Thus in
some sense our Theorem is best possible. But in fact we will
outline the proof of the following stronger .

Theorem 2 . Let Icy?"+£)'°g'°g X . Y' hen iiniforml .' in I;- aiid l,

f(x ; k, 1)_-l + o(x) .

It seems likely that the following stronger result also holds .

Assume that k= log log x + c(log log x)' 2 .

Then
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x

F'(x ; k) _ ('+o(]) ) x ~2~) ,,_ e _s a~ 9 dy .

i hope to return to (3) in a subsequent paper.
I was lead to these questions in connection with the folio-

wing problem of Sivasankaranarayana Pillai : Denote by Q(x)
the number of integers n<.c which have no divisor of the form
p(/,'p-} I), Pillai proved

Q(x)<cx / log log log .x .

Using Theorem 1 we will outline the proof of

Theorem 3 . Let C,' be Eider's constant. Tire have
-c

Q(x)=(1+0(1))

	

2 xlog log log x

Denote by d(n ; k, l) the number of divisors of n which are=
l(mod k) . We will outline the proof of

Theorem 4 . Let k<2 ' á z0-E) 109 log x Then for every i1>0, we
have /ór every l, and 12, /or all but o(x) integers n<x,

I - ;/<(n; t", l,) / d(n; k, l2)<I+i/ .

Throughout this paper c, c,, . . . will denote positive absolute
constants, i7, will denote small but fixed positive numbers
which usually will depend on r and on the choice of previous
7l's .S, S(t~ . . . will denote sets of integers n<• and ~'(S) will denote
the number of integers in the set S, p and q will denote primes .
7,O?) denotes the number of distinct prime factors of n.

It will suffice to prove Theorem 1 for the k satisfying

(4) log log x_' k< 2(i-E)"logx

To see this observe that every k,<2('-£)'°g'Og x- ' has a mul-
tiple satisfying (4) and if we prove Theorem 1 for /, it follows
for all /.', k . Henceforth we will always assume that k satisfies
(-l) (i .e . in the proof of Theorem 1) .

The principal tools needed for the proof of Theorem 1 is a
recent result of Rényi and myself [2], a theorem of Walfisz [6]
on the distribution of primes in arithmetical progressions and a
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theorem of Hardy -Ramanujan-Turán [31 [4], we also will need
Brun's method .

Rényi and 1 [21 proved that if G is an Abelian group of m
elements and if we choose t>(1+77,)log m / log 2 distinct ele-

ments a,, . . ., a, of G, then for all but
0CCm//

of these choices,

all elements of G can be written in the form

fl a ; b i, 6, = 0 or 1 .

This theorem immediately implies

Lemma 1 . Let 11(1+711 ) log (p(k) / log 2, (77,<e) . Then for all

but
o((

(pk)1 choices of the distinct residues 1,, . . ., I t every 1

(mod 1.) is of
J

the form

where

(5)

inli,

	

Ó,= 0 or 1 .

Demote by

	

the interval

(e(,ogx)Ra x I (Iog log x) :;)
,

1- T1>>(1 + ?70(1

Denote by 7(y, d, l) the number of primes p<y, p =- l
(mod d) . Let A>O be any number, assume d<(log y^ A theo-
rem of Siegel-Walfisz [61 states

Y

( 6)

	

~(y d, l)=1
Y

dz + U(yec (Iog Y)' 2 ) .
9'(d) log z

L

The error term is uniform in y, d and 1, but may depend on A

Lemma 2. For every l and k

Y _ ~

	

__ \1+/
)}

101
xPp_,(mod k)

	

0

j\ g `

	

p=1(mod k) p

the dash in the summation indicates that p is in Ix. The error
term is uniform in k and l .

It is easy to see that if k satisfies (4) and y is in Ix then (6)

(7)
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is satisfied . (7) then follows by elementary and straightforward
estimations which we supress . It would be easy to give an ex-
plicit asymptotic formula for F, but we do not need this .

Lemma 3 . Let t<2 to lo;

	

1,, . . ., i f distinct residues mod 1 : .
Then

1+0~, P
i ' . . - (log,,')/2) ) ~ t

in I" p i runs through the primes of L R satisfying p i -_ li (mod k) .
The error term is uniform in /v and the l's .

Lemma 3 follows immediately from Lemma 2 by a simple
computation (L satisfies (4)! ) .

Put

where p" 'I '; n means that p° Ia but p° +? , n and the dash indica-
tes that p runs through the primes of 1R .

Lemma 4. For all but o(x) integers n<x we have

v(f(n)) _ ( 1 +0(?) ) (I - vl,)log log x.
Lemma 4 follows easily by the method of Turin [4] . From

the well known theorem of Nlertens ~ I / p = log log y+ 0(1) we
P< Y

obtain
(8) 1 /P - (1-1i2+o(1)log log x.

P iu I R

From (8) we obtain following Turin [4] .
R
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f(n) = íl' p a

0 ) )

	

( v(f(n)-(1- ;72)log lo(yx) 2= o(x(log log x2)) .

(9) immediately implies Lemma 4 by the inequality of Tche-
bicheff [4] .

Lemma 5 . For all but o(x) integers n<x f(n) is squarefree .
The number of integers ,z<x for which /(n) is not square-

free is clearly less than (in I' l,.>e.xp((logx)n")

F x / P ,<X z" 1 / k2 = o(x) .
P in I x

Lemma 6. The number of integers n<x° for which f(n) has
two prince factors p - q (mod k), (k satisfies (4) ) is o(x) .
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The number of integers n<<r which have two prime factors
p =- q (mod k) in 1. is clearly less than

(10)

	

x I
1 y 1= A(x) .

pin I X p ginl x

	

q
g=p(mod k)

From (6) we obtain by a simple computation

ü1) I A(x)< 1 1e, log logx
<cs(log log x) 2 / m(k)=o(1) .

x

	

pin Ix p

	

4,(k)

(10) and (11) proves Lemma 6 .

Lemma 7. T,et B<x1" I°ge Denote by S(B) the set of integers
n<x lbr with f(n) -B. Then

(12)

	

N(S(B))=(1+0(1))
x

fl
gC1

	 1 )B piuj P

The integers n<x for which f(n) = B are of the form

(13)

	

yB, y<x / B, y 0 (mod p), p in I,

It easily follows from Brun's method [51 that the number
of integers y satisfying (13) is given by (12), which completes
the proof of Lemma i .

Now we are ready to prove Theorem L BY Lemmas 4,5
and 6 it suffices to consider those integers n<x for which f(n)
is squarefree, all prime factors of f(n) are incongruent mod k,
and for which

(14)

	

(1-712-713)log log x<v(f(?z))<(1-712+~3)log log x

where _

(lo)

	

1-712- '73i(1+ y/1)( 1- £) •

BY ( >), (15) can be satisfied if )13 is small enough. Hence-
forth it is understood that n satisfies these conditions . Denote
by SO) the set of integers n for which ),(f(n)) = t . The proof of
Theorem 1 will be complete if we show that for every t (satis-
fying- (14) ) all but o(N(S(t)) ) integers have a divisor =- l (mod lc)
for every l, where the error term o(N(S(t)) ) is uniform in t . To
show this denote by S(t ; 1 1 , . . . > 1 t)(1í l ; (mod 1C) ) the set of inte-
gers n for which
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t
v(f(n)) _, F1 p i, p i =- li (mod k) .

A set SO; 1,, . . ., h) will be called good if aeS'(t ; 1,, . . ., h) im-
plies that n has a divisor =- (mod k) for every l . Clearly a set
SO; 1,, . . ., It) is good if (and only if) every l (mod k) can be writ-
ten in the form

t

	

g.
n Ii', b i = 0 or 1,

i=t
k

The number of sets S(t ; 1,, . . ., It) is clearly
( I ) .
99O

	

(15) and

Lemma 1 implies that all but 0
((99(k))

/
of these classes is good

(the error term is uniform in k) . Hence the proof of Theorem 1
will be complete if we prove that all the N(S(t ; 1,, . . ., lt )) are
asymptotically equal (') . In fact we shall show

(16)

	

A'(S(t; 1,, . . ., lt))=(1+0(1)) .r1í I I (1

	

1
P in Ix

	

p

where I is defined by (7) and the error term is uniform in t and
the 1's. Clearly

(17)

	

N(S(t; 1,, . . ., lt))- "N(S("'-Pt))

where I" is defined as in Lemma 3 (i . e. Pi runs through the
primes of I z satisfying pi = li = (mod k) ) . 13y the definition of
Ix and t we evidently have

(18)
t
n pi<(Xal(ioe log x)3)t ` ~,ihon log a) .

i- 1 ''

Thus from (I '), (18), Lemmas 7 and 3

N(S(t ; 1,, . . ., lt)) _ "N(Sv(P, . . .Pt))-

(1+0(1) )x n CZ-)	 1
P-t

(]+ OP)) x ~ n (1 1
P in Ix

	

p

	

-y,t . . .pt

	

p in Ix

	

p

which proves (16) and hence the proof of Theorem 1 is complete .
The proof of Theorem 4 follows the same lines as that o£

Theorem 1 . The only difference is that we need here the follow-

(1) Since clearly N(S(t))-

	

N(S(t ; l t , . . ., It )) .
,, . ., it
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inn theorem of Rényi and myself [2] . Let G be an Abelian
group of m elements and let t>(2+E )log m / log 2 . Then for all

but o W )) choices of t distinct elements al , . . ., a t of G, all

elements of G can be written in (1-{-0(1) )2t / m ways in the form
t

	

g .
n a ; ,

	

a i - 0or 1 .
i=~

This theorem immediately implies

Lemma 1 ' . Let t>(2-}-)l)log T(k) / log 2. Then for all but

~t1)1
I
choices of the distinct residues 1 I , . . ., l í for every 1

fmod k) the number o f solutions o f
t

	

61n 1i =- l (mod k), (S i = 0 or 1, is (1-E-0(1))2í / cp(k) .
i=1

The proof of Theorem 4 now proceeds as the proof of
Theorem 1 .

It is possible that Theorem 4 holds for all k<2('_8)'O log x

instead of 2('/'-E)IO9'°" a This would depend on the corresponding
improvement of our theorem with Rényi •

Now we outline the proof of Theorem 2 . The term
.1

cle-

arly comes from considering the multiples of l, i .e . the numbers

a l, u<I	. Thus our proof will be complete if we can show that

if k>2( ' + ' ) "I "° s and N(k., l) denotes the number of integers
n<',' which have at least one divisor in the progression

uniformly in l and k .
We will only give a brief indication of the proof of (20) .

Denote by F(n) the number of prime factors of n where multi-
ple factors are counted multiply. A well known theorem of Hardy
and Ramanujan (~] states that the number of integers n<x for
%%hick F(n)>(1+ q)log log .x is o(x) . put f(1+ 31)log log x j = T .

1-á-d.1,, 15d< x-1

then
1;;

(2()) N(k, t) = o(x)
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Then (T„ (x) denotes the number of integers n<x with v(n) = u)

(21)

	

N(k, l)= F

	

I

	

~zu(x/l+k d)+o(x) .
dC xkL zs<7`-v(I+d k)

(21) follows from the above quoted result of Hardy- Ramarmian
and from

F( (/ +7, d)s) > v(s) +v(I+d k) .

Hardy and Ramanujan [3] proved

(22)

	

-.(J)<	 e'y
(log logy+c2)°-1

log y

	

(u-1) r

and it is not hard to prove using their ideas that

1

	

1 C3(1Og 109x+C4)v-I(23)

	

i '+dlv< k

	

(v-Z)r

where the dash indicates that the summation is extended over
the d for which i, (l+d k) =v .

Using (21), (22) and (23) we can obtain (20) by long but
elementary and fairly straightforward computations . This com-
pletes the outline of the proof of Theorem 2 .

Finally we outline the proof of Theorem 3 . First we prove
that for every 12>0 if x>XA)

	 e x
(24)

	

Q( z)á(1+'7) log 2log log
x, .

Lemma 8 . Denote by l(n) the least prime factor of n and by
N(p, x) the number o f integers n<x with l(n)= p . I_et p<log x.

then
1

NO), x)=(1+0(1)) - n 1- q, (p 1< 1

Lemma 8 follows easily by the sieve of ;ratosthenes .

Lemma 9. Let y<log rx~, ;y->x as x-*~c . Then the number
of integers n<x satis/ying l(n)>y equals

(I j oí 1) x e -C/ log y),

Lemma 9 follows easily by the sieve of Eratosthenes and
from the well kno-,\- n result of Mertens
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n f 1 1/_ (1-}-0(1)) e-c / log y .
PSy

	

P

Lemma 10. Let p<2o'-"""1 0gX Then /or all but o(N(p,x)/loglogx)
integers n < x satisfying l(n) -- p, n has a divisor =1 (mod p) .
The, o is uniform in p .

Lemma 1() is the crucial lemma . It does not explicitely
follows from Theorem 1 (even with o( ;V, (p, x)) replacing
o(N(p, x) /lo(, log x) but the method of Theorem I gives it wi-
thout much difficulty . For the proof of Lemma to we need an
error term in the theorem of Rényi and myself (21 but this is easy
to accomplish. 1 n fact we obtain that all but o(N(p, x) /log log x)
integers satisfying /(n) = p have a divisor = l (mod p) for every
/ . The error term o(N(p, x) / log log x) can be very much im-
proved and this I plan to investigate in a separate paper .

Now we prove (24) . `'e split the integers n<x into two
classes . In the first class are the integers all whose prime factors

are greater than 2(I-"')10'"1' • By Lemma 9 the number of inte-
gers of the first class is

(1+o(1) ) x e- ` l (1 - ~ jlog 2log logx<

(1+ 2) x e-cl log 2log log' x

if ~, = zj I (rr) is sufficiently small . By Lemma 10 all but

(26)

	

of \ (p, I) / log log x), pC 2tI-~>>iog jo g

P

integers of the second class have a divisor of the form p(kp-}-1),

Now clearly I N(p, x) =x, hence from (Z6) all but o	
n log logx

integers of the second class have a divisor of the form p(kp+ 1),
this together with

	

implies (24) .
To complete the proof of Theorem a we have to show that

for every q>0 if x>xa(q) if

(27)

	

O(x)i(1- )
log 2log log

To show (21) observe that Lemma 9 implies that the num-

ber of integers a<-i,- for which 1(n)>2"
+",)IOgl a

is
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(28)

	

(1+o(1))xe-`/ (1- )jjIog 2log log : ,.>

>

	

:x e-c / log 2 loo* log

if 17, _ iá,61) is sufficiently small .
It can be shown by the method used in the proof of Theo-

rem 2 that only 0(, , '/ lo- log-') integers n< .r; satisfying I(n)>
1)l0,- I0, R

~~ have a divisor of the form 1)(L'p+ 1), the details
are quite complicated and we do not give them . This together
with ('28) proves (27) and thus the proof of'1'heorem 3 is complete .

It seems likely that for all but 0(x) integers n<x there is
a 1.k satisfying (4) for which n has no divisor =- 1 (mod 1,), but
this / have not been able to prove .
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