ON THE DISTRIBUTION OF DIVISORS OF INTEGERS
IN THE RESIDUE CLASSES (MOD d).

By
P. ERDOS (IHaifa)

T'hroughout this paper & and [ will denote integers satis-
fying 0<I<k, (1, k)= 1. Denote by [(x;k, 1) the number of in-
tegers n<x which have a divisor { satisfying t =1 (mod %) and
F(x k) denotes the number of integers n< .r which have a divi-
sor =1 (mod k) for every l. Clearly Ffx: :’.')Q,f'(.r; Iy 1), It is easy
to prove that for fixed &

F(xk)j=x+o(r).

We obtain very much more difficult questions if / tends to
infinity together with «. We are going to prove the following [1].

Theorem 1. Let >0 be fired bul arbitrary, /<208 108%
Then uniformly in I.
(1) Fle; k)= ux+olx).

In other words if k< 2" 1*¥* then almost all numbers
have a divisor in every residue class !/(mod /). A well known

theorem of Hardy— Ramanujan [3] states that for almost all
numbers n<x

[_)) d(n)<.?tlfnl:1)j.|’n;; log x

(2) easily implies that F(x, k)=o(x) if k>2" 71818 % mhus in
some sense our Theorem is best possible. But in fact we will
outline the proof of the following stronger.

Theorem 2. Let [>2" % %% o wniformly in I and I,
fla; k1) = f

It seems likely that the following stronger result also holds.

Lofx).

Assume that k= log log ® +¢(log log %) *.
Then



28 P. ERDOS

1 o
(3) I"{:r;f;)=(1-|-o(1)):::(2-;_r},--.__)5’e /Zdy.

I hope to return to (3) in a subsequent paper.

I was lead to these questions in connection with the follo-
wing problem of Sivasankaranarayana Pillai: Denote by Qfx)
the number of integers n<.r which have no divisor of the form
p(lp+1). Pillai proved

Qfx)<ex|log log log .
Using Theorem 1 we will outline the proof of

Theorem 3. Let € be Euler’s constant. 1We have

-
= e
)= 1 1 ————e
Q{L) !( +0( ))log-?ioglog-l’
Denote by d{n; I, ) the number of divisors of # which are=
Ifmod k). We will outline the proof of

Theorem 4. Let k< 2=V 818X Thon for every 7>0, we
have [or every l, and 1y, for all bul ofx) inteyers nx

1—y<Zd(n; k, 1) [ d(n; k, 1)< 1+

Throughout this paper ¢, ¢,,... will denote positive absolute
constants, 7, 7;,... will denote small but fixed positive numbers
which usually will depend on € and on the choice of previous
8.8, S(). .. will denote sets of integers 1<z and N(S) will denote
the number of integers in the set S, p and ¢ will denote primes.
»(11) denotes the number of distinct prime factors of 7.

It will suffice to prove Theorem 1 for the k satisfying

{4} al1—e) log log x—‘]<;_<g(‘l—a] lox logx
o —_— .l.“\\— -

To see this observe that every k<2928 * }aq 2 mul-
tiple satisfying (4) and if we prove Theorem 1 for & it follows
for all /, | k. Henceforth we will always assume that / satisfies
(4) (i-e. in the proof of Theorem 1).

The principal tools needed for the proof of Theorem 1 is a
recent result of Rényi and myself [2], a theorem of Walfisz [6]
on the distribution of primes in arithmetical progressions and a
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theorem of Hardy —Ramanujan—Turan [3] [4], we also will need
Brun’s method.

Rényi and I [2] proved that if G is an Abelian group of m
elements and if we choose t>(14n)logm|log 2 distinct ele-

T)) of these choices,

all elements of & can be written in the form

ments dy,..., & of (¢, then for all but O((

a,-f’i, d,=0o0r 1

| e o

This theorem immediately implies
Lemma 1. Let t>(141,)1og ¢(k) [log 2, (1, <e). Then for all
but 0(("0{;:))) choices of the distinct residues l,,..., I, every |
(mod k) is of the form
_ﬁl i, 0.=0or 1.

Demote by / the interval
(logx)M1  1'{log log x )8,
(e , L )
where

(5) 1= > (14, )(1—¢).

Denote by a(y,d,l) the number of primes p<y, p=I
(mod ). Let A>>0 be any number, assume d<(log ¥)*. 4 theo-
rem of Siegel —Walfisz [6] states

y
v . G ; dz _ i,
t 7 E,d.,z —_— (4 c(log §) 2 3
(6) a(y ) Q’(d)Sl—ogZ—i_ (ye )

The error term is uniform in 7, d and ! but may depend on 4
Lemma 2. For every | and
[ | 1 . 1
(7) == ¥ —=(1+0(__‘)) =
p=1{mod k) p Ioga, pE{(Zmnd k) p

the dash in the swmmation indicates that p is in I.. The error
term is uniform in k and I,

It is easy to see that if k satisfies (4) and ¥ is in /x then (6)
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is satisfied. (7) then follows by elementary and straightforward
estimations which we supress. [t would be easy to give an ex-
plicit asymptotic formula for ¥, but we do not need this.

Lemma 3. Let <2 log log v, L,..., I distinct residues mod .

Then
re 1 1 t
: = I14+0 ———
z PP ( T ((log-*fi"’"))z

in 3 pi runs through the primes of 1« satisfying pi=1; (mod k).
The ervor term is uniform in I and the 1’s.

Lemma 5 follows immediately from Lemma 2 by a simple
computation (/' satisfies (4)!).
Put
fln)= 1" p*
p®|in
where p*| 7 means that p* 7 but p**'/n and the dash indica-
tes that p runs through the primes of /.

Lemma 4. I'or all but ofx) integers n<i we have
v(f(n))=(140(1) )(1—1,)log log .

Lemma 4 follows easily by the method of Turdn [4]. From
the well known theorem of Mertens ¥ I/p=loglogy+U 1) we

s p<y
obtain

(8) Y 1/p=(1—ny+o(1)loglog .

pin Iy

From (8) we obtain following Turan [4].

(9) 2 ((fin)—(1—ysllog log x)*== o x(log log x2)).
n=1

(9) immediately implies Lemma 4 by the inequality of T'che-
bicheff [4].

Lemma 5. For all bul ofx) integers nx [(n) is squarefree.

The number of integers <« for which [(n) is not square-
free is clearly less than (in X" A>exp((log x)™)

I xlp<ay 1lkE=o0(x).

pinl

Lemma 6. The number of integers n<x for which f(n) has
two prime factors p=q (mod k), (k satisfies (1) ) is o(x).
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The number of integers 7< .« which have two prime factors
p=q(mod k) in I« is clearly less than

(10) @ —=A(xz).
P g Iy P 9 gI)t' q
q=plmod k)

From (6) we obtain by a simple computation

1 ¢,]og log @
(11) —~4()“J< = =25 Zeyflog log )2/ p(k)=0(1).
ZI p ol o

(10) and (11) proves Lemma 6.

Lemma 7. Let B "% 8, Denote by S™ the set of integers
n<x for wich f(n)=B. Then

9 T(SB)) — A ( —i)
(12) N(S®)=(1+0(1)) 4 . =)
The integers n<_.r for which [{n)= B are of the form
(13) yB, y<x | B, y % 0(mod p), p in Ix.

It easily follows from Brun's method [5] that the number
of integers ¥ satisfying (13) is given by (12), which completes
the proof of LLemma 7.

Now we are ready to prove Theorem 1. By ILemmas 4,
and 6 it suffices to consider those integers n<x for which f{1n)
is squarefree, all prime factors of [{n) are incongruent mod F,
and for which

(14) (1—ny—mns)log log x<r([(n))<(1—ns+ns)log log
where
(15) 1—ng—ns >(1+mn)(1—¢).

By (9), (10) can be satisfied if #; is small enough. Hence-
forth it is understood that » satisfies these conditions. Denote
by S(f) the set of integers 7 for which »(f(n))=1. The proof of
Theorem 1 will be complete if we show that for every [ (satis-
fying (14)) all but o N(S(t)) ) integers have a divisor =1 (mod %)
for every I, where the error term o(N(S(t)) ) is uniform in ¢. To

show this denote by S(t:ly,..., l)(li# l;(mod k) ) the set of inte-
gers 1 for which
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ﬂ/'(ﬂ-))=_ipv p,=li(mod k).

A set S(t;1y,..., It) will be called good if neS(t; Ly,..., I} im-
plies that 7 has a divisor =(mod k) for every I. Clearly a set
S(t; 1,..., It) is good if (and only if) every !(mod k) can be writ-

ten in the form
t

&
ni&', 6 =0o0r 1.

The number of sets S(t; ..., L) is clearly rpik}). (15) and

k
Lemma 1 implies that all but 0((';)2 ))) of these classes is good

(the error term is uniform in k). Hence the proof of Theorem 1
will be complete if we prove that all the N(S(t ..., 1)) are
asymptotically equal ™. In fact we shall show

(16) A\-'(sa,-fl.._.,z,)_;:(pro(m.,-z‘ |‘| (1-%)

where 7 is defined by (7) and the error term is uniform in ¢ and
the I’s. Clearly

(17) N(S(; Lyooo 1) ) = 5 N(SPEP0)

where X" is defined as in Lemma 3 (i- e. pi runs through the
primes of /. satisfying pi=10 =(mod k)). By the definition of
I« and ¢ we evidently have

{18) rt| p_<(l,-mlng log x].:#)l < Jpl/log log x).
=1

Thus from (17), (18), Lemmas 7 and 3
N(S(t; by, ) = z'u\-'m“’“""t’) =
; I\er 1
(14o(1) ) [] (1— ,{)Z e _(r+au» Z [ ( p)
pinly 3 P mI

which proves (16) and hence the proof of Theorem 1 is complete.
The proof of Theorem 4 follows the same lines as that of
Theorem 1. The only difference is that we need here the follow-

(1) Since clearly N/Sit)j= 1 N(S(t:1,,..., ).

Tawmy b
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ing theorem of Rényi and myself [2]. Let G be an Abelian
group of m elements and let £>(2+)log m [log 2. Then for all

but w((;”)) choices of { distinct elements ay,..., & of G, all
elements of (+ can be written in (140(1) )2t/ m ways in the form
_[EI1 a?i, d,=0or 1.
This theorem immediately implies
Lemma 1°. Let >(24n)log o(k)[log 2. Then for all but
”((rpif’:))) choices of the distinet residues 1,,..., Ly for every |

{mod k) the number of solutions of
t 3
Mn .’?’ =l(mod k), 0,=00r 1, is (1+o0(1))2t ] (k).
j=1

The proof of Theorem 4 now proceeds as the proof of
Theorem 1.

It is possible that Theorem 4 holds for all k<l 2!'—®oglox =

instead of 2"*7"'°¥'°¢* "I'his would depend on the corresponding
improvement of our theorem with Rényi.

T . A

Now we outline the proof of Theorem 2. The term &7 cle-
arly comes from considering the multiples of I, i.e. the numbers

x i -
wl, u< v h Thus our proof will be complete if we can show that

if 2t lorionx 404 N(k, 1) denotes the number of integers
n< r which have at least one divisor in the progression

(19) 14d 1, 1<d< w'}'_”
then
(20) Nk, t)=o(x)

uniformly in ! and k.

We will only give a brief indication of the proof of (20).
Denote by F(n) the number of prime factors of 7 where multi-
ple factors are counted multiply. A well known theorem of Hardy
and Ramanujan [3] states that the number of integers n<« for

which F(n)>(1+4)log log « is o(x). Put [(1+3)loglogx |=T.
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Then (7,(x) denotes the number of integers n<x with ¥(n)=1u)
(21) Nk l)= 3 3 a(w [1+k d)+ofx).
frgiff_‘ u T —w(l+4d k)

(21) follows from the above quoted result of Hardy —Ramanujan
and from

Fl(1+kd)s) > v(s)+r(1+d ).
Hardy and Ramanujan [3] proved
ey (loglogy+es)*™
logy (u—1)!

and it is not hard to prove using their ideas that

(23) 5o L« L edloglogate)
= l4+dl: ™~k (v—=1)1

(22) ()<

where the dash indicates that the summation is extended over
the d for which »(1+d k)=.

Using (21), (22) and (23) we can obtain (20) by long but
elementary and fairly straichtforward computations. This com-
pletes the outline of the proof of Theorem 2.

Finally we outline the proof of Theorem 3. First we prove
that for every 7 >0 if w>x,(n)
(24) Qle)(1+2)

e~cw

log 2log log

Lemma 8. Denote by l(n) the least prime factor of n and by
N(p, x) the nuwmber of integers n<ax with I(n)=p. Let p<log .
then

N(p, a:)=r1+or1;')%’ M (J_L)

fl{p q
Lemma 8 follows easily by the sieve of Eratosthenes.

Lemma 9. Let y<log ., y—=>» as x—>x. Then the number
o/ integers n<x satis[ying lin)>y equals
(14+0f1)xe</logy)

Lemma ! follows easily by the sieve of Eratosthenes and
from the well known result of Mertens
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i (I_L) —(140(1)) e/ log ¥.
Py 4

Lemma 10. Let p< 278> Phon for all but o/ N(p,+)/loglogx)
integers n < x salis/ying l(n)=1p, n has a divisor =1 (mod p).
The o is uniform in p.

Lemma 10 is the crucial lemma. It does not explicitely
follows from Theorem 1 (even with of\N,(p, x)) replacing
ofN(p, ) [log log ) but the method of Theorem 1 gives it wi-
thout much difficulty. For the proof of I.emma 10 we need an
error term in the theorem of Rényi and myself [2] but thisis easy
to accomplish. In fact we obtain that all but o/ N(p, .©) [ log log )
integers satisfying /(n)=p have a divisor =1!{mod p) for every
I. The error term o(N(p, x)[loglog x) can be very much im-
proved and this [ plan to investigate in a separate paper.

Now we prove (24). We split the integers <« into two
classes. In the first class are the integers all whose prime factors
are greater than 2" ""*'**, By T emma ¢ the number of inte-
gers of the first class is

(14o0(1) Jwe=|(1—n;)log 2log log <

(20)
< (H— )xc*“/fog Zlog log @

if 7, =11(n) is sufficiently small. By Lemma 10 all but
(2!5] z ”rf"_\'{p, ;,_.) / ]02. 102 J.)’ pgl?t!—mhng log x
]1

integers of the second class have a divisor of the form p(kp-+1).
Now clearly § N(p, x)=, hence from (26) all but o ( - )

D log loga
integers of the second class have a divisor of the form p(kp-+1),
this together with (25) implies (24).

To complete the proof of Theorem 3 we have to show that
for every 3 >0 if x>z (y) if
e
27 Nxe)>(1—n) —5——
(27) >(1=n) log r"lo;, log
To show (27) observe that Lemma 9 implies that the num-

" . oft+ni)loglog x «
ber of integers n<x for which [(n)>2" "T"" 8 g
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(1+o(1))xe—cf r'f—}—*}h)log- 2 log log oS

(28) _,
> (1— '—;) x e~ [log 2log log
if 7, =19,(y) is sufficiently small.

[t can be shown by the method used in the proof of Theo-
rem 2 that only ofr[log log ) integers n<x satisfying /(n)>
Softrmliea e x 0 ve a divisor of the form p(lp+1), the details
are quite complicated and we do not give them. This together
with (28) proves (27) and thus the proof of Theorem 3 is complete.

It seems likely that for all but o/x) integers n<x there is
a I satisfying (4) for which n has no divisor =— I (mod /), but
this I have not been able to prove.
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