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Our purpose in this note is to present a natural geometrical definition 
of the dimension of a graph and to explore some of its ramifications. In 
$1 we determine the dimension of some special graphs. We observe in 92 

that several results in the literature are unified by the concept of the 
dimension of a graph, and state some related unsolved problems. 

We define the dimension of a graph G, denoted dim G, as the minimum 
number n such that G can be embedded into Euclidean n-space E,, with 
every edge of G having length 1. The vertices of C are mapped onto 
distinct points of E,, but there is no restriction on the crossing of edges. 

1. Some graphs and their dimensions. Let K, be the complete graph 
with n vertices in which every pair of vertices are adjacent (joined by an 
edge). The triangle K, and the tetrahedron K4 are shown in Figure 1. 

Fig. 1. 

The dimension of K, is 2 since it may be drawn as a unit equilateral 
triangle. But clearly, dim K4 = 3 and in general dim K, = n - 1, 

By K,-x we mean the graph obtained from the complete graph K, 
by deleting any one edge, z. For example K, - x and K, - x are shown 
in Figure 2. 

Kg-x: - Kq - x: 

Fig. 2. 

From this figure, we see at once that dim (KS-z) = 1 and that 
dim (K4 - X) = 2 since it can be drawn as two equilateral triangles with t’he 
same base. By a similar construction it is easy to show that in general 
dim (K,, - X) = N, - 2. 

The con@ete bicoloured graph I!?,?,% has m vertices of one colour, n of 
another colour, and two vertices are adjacent if and only if they have 
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different colours. W7e shall see how to determine the dimension of K,,,, 
for all positive integers m and 1%. In Figure 3 are shown three of these 
graphs, each of which we will see has a different dimension. 

%,4: -go K2,4: @ K3,3: 

Kg. 3. 

Which of the graphs J&, have dimension 22 Since K,, r = K,, 
dim K,, I = 1, and as shown in Figure 3, dim K,, 4 = 2. Obviously, for 
every n> 1, dimK,,,= 2. There is also one other complete bicoloured 
graph with dimension 2, namely t’he rhombus K,, a. Again from the figure, 
we see that dimK a, 4 = 3 and in general that dimK,, n = 3 when n > 3. 
Finally, it is easy to show that the dimension of every other graph Km,, 
not already mentioned in this paragraph is 4, including the famous 3 houses- 
3 utilities graph K,, a. The proof is due to Lenz, as mentioned in a paper 
by Erdiis [2], and proceeds as follows. 

Let {u,~} be the m vertices of the first colour and let {vi> be the n vertices 
of the second colour. We assign coordinates in E, to zci= (xi, yCli, 0, 0) 
and vi = (0, 0, zj, wi) in such a way that xi2 + yi2 = $ and zi2 + wj2 = 3. Then 
every distance d(zci, z’~) = 1, proving the assertion. 

In the next two illustrations of the dimension of a graph we use the 
operations of the “ join ” and the “product ” of two graphs G, and G,. 
Let VI and VP be their respective vertex sets. The jo& 4-t G, of two 
disjoint graphs contains both of them and also has an edge joining each 
vertex of G, with each vertex of G,. The cartesiun prodzcct G, x G, of G, 
and G, has VI x V, as its set of vertices. Two vertices u= (ur, u2) and 
ZI= (q, va) are adjacent in G, x G, if and only if ul= v1 and u2v2 is an edge 
of G, or uz = v2 and u1 v1 is in G,. Let P, denote the polygon with n sides. 
By the wheel with n spokes is meant the graph P, -f-K,; see Figure 4, 

Fig. 4. 

What is the dimension of a wheel? We already have one example since the 
smallest wheel P3 f K, = K, has dimension 3. From Figure 4, we see that 
dim (P, + K,) = dim (P, + K,) = 3 and that dim (P, + K,) = 2. By making 
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expeditious use of the unit sphere, the rea,der can verify that for all n > 6, 
dim (P, + K,) = 3. Thus w-e observe that the dimension of the n-spoked 
wheel is 3 except for “the odd number 6 “. 

The m-cube Q, is defined as the Cartesian product of n copies of KZ; 
see Figure 5. Since Q1 = K,, dim Q1 = 1. Since QZ = K,, 2 = P,, dim Qz = 2. 

Q,: 1-1 Q3: H 9,: ng 
Fig. 5. 

The 3-cube Q3 is drawn twice in Figure 5. Its first appearance might 
suggest that its dimension is 3. But its second depiction (in which two 
pairs of edges intersect) shows that dim Q3= 2. Similarly, for all n > 1, 
dim Qn= 2. 

A modest generalization of this observation asserts that for any 

graph G, dim (G x KJ equals dim G, if dim G > 2, and equals dim #+ 1, 
if dim#=O or 1. 

Tiiiii? 
Fig. 6. Fig. 6. 

The well-known Petersen graph is shown in Figure 6. What is its 
dimension? It is easy to see (especially after seeing it) that the answer 
is 2; see Figure 7. 

Fig. Tr 
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By the way, note that the dimension of any tree is at most 2. A cactus 
is a( graph in which no edge is on more tha’n one polygon. Since the defini- 
tion of dim G allows edges to intersect, it is easily seen that the dimension 
of any cactus is at most 2. 

In this section we have evaluated the dimension of a few special graphs. 
But for a given graph G, we know of no systematic method for determining 
the number dim G. Thus the calculation of the dimension of a given graph 
is at present in the nature of mathematical recreation, 

2. Some theorems on dimension. In the theorems of this section we 
use the following concepts : the girth of a graph, t,he chromatic number 
of a graph, and the chromatic number of a Euclidean space. The girth 
of a graph C is the number of edges in its smallest polygon (if any). The 
chromatic number x(G) of G is the least integer n such that the vertices of 
G can be coloured using n colours so that no two adjacent vertices have 
the same colour. The chromutic number x(E,J of a Euclidean space E, 
is the smallest number of point sets into which E, can be partitioned so 
that in no set does the distance 1 occur. 

THEOREM 1. For any graph G, dim G < 2x(G). 

The proof of this theorem is a simple generaliza.tion of the argument 
used in $1 to establish that dimK,,,,, ,< 4 ; see [2]. The next two theorems 
do not deal with the dimension of a graph, but will be used in la,ter proofs. 

THEOREM 2. (Erdos [l]). There exists a graph with arbitrarily high 
girth and arbitrarily high chromatic num.ber. 

THEOREM 3. (Erdos [4]). If G is a graph with n vertices and girth 
greater than C logn, for C su.ciently large, then x(G) < 3. 

COROLLARY. Under the above hypothesis, dim G < 6. 

It is possible that the above hypothesis implies dim G < 3 or even 
dim G < 2, but we could not decide this question. 

THEOREM 4. (Erdos [3]). Among all graphs with n vertices, q edges, 
and dimension 2k or 2k + 1, 

limmaxg =$ I- $ 
n=m ( 1 

The following question was posed by Erdbs [2] : What is the ma,ximum 
number of edges among all graphs of dimension d which have n vertices? 
The next theorem gives the answer for d = 4. 

THEOREM 5. (E d r iis, unpublished). Among any n points of E, the 
distance 1 between pairs of points can occur at most n + [n2/4] times, and this 
-number can be realized ij n s 0 (mod 8). 
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We now turn to some results concerning the chromatic number of a 
Euclidean space. The brothers Moser [6] called for a proof of the inequality 
x(3,) > 3. Hadwiger [5] found the following inequalities. 

THEOREM 6. P<x(E,)<7. 

COROLLARY. 1jc dimG=2, then x(G)<7. 

Klee (unpublished) proved the next theorem. 

THEOREX 7. J’or every positive integer n, x(E,) is fmite. 

This result has some consequences for the dimension of a graph, but 
they are not as sharp as Theorem 1. 

COROLLARY 1. If dim G is large, so is x(G). 

COROLLARY 2. There exist graphs with arbitrarily high dimension und 
girth. 

One might think that a graph of sufficiently high dimension must 
contain a complete subgraph K, of specified order ?z > 2. That this is not 
necessarily so follows from the last corollary. 

Unsolved problems. 

I. Call a, graph G critical of dinzension ?s if dim G = n and for any proper 
subgraph H, dim N < n. For example, Knfl is critical of dimension n. 
Characterize the critical n-dimensional graphs, at least for n = 3 (this is 
trivial for n = 2). 

II. Let G have n vertices and assume that every subgraph H with k 
vertices has dimension at most nz. How large can dim G be? (For 
chromatic number instead of dimension, Erdiis investigates this in [4].) 
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