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§ 0. Introduction. It is well known (see e.g. [1]) that the number
of those integers #» < # which can be represented in the form n = k*+ 2
(k and ! integers) has the order of magnitude #[Vlogz; as clearly the num-
ber of pairs k, I of positive integers such that k24 1® < & is ~ =4, the
reason why the set of numbers which can be represented as the sum of
two squares has zero density is not that the squares are too rare, but —
loosely speaking — that they are ‘“‘too regularly” distributed, so that
among the sums k*--1* there are t00 many equal ones. This was first
demonstrated by Atkin [2], who solved the following problem, proposed
by J. E. Littlewood: If each square k2 is replaced by a random integer w,
chosen according to a certain probability law in the neighbourhood of
k2, then the sums ».+» almost surely have a positive density.

In §1 of the present paper we introduce a class of sequences of ran-
dom integers. This construction has been used already in [3]. In §2, 3
and 4 we prove some theorems of a similar character to that of Atkin,
mentioned above. We shall show that if the random sequences », and
have approximately the same order of magnitude as the sequence ck?
with some ¢ > 0, then the sequences v.+ u;, k*+ y; and 7 +» will have
positive density with probability 1; moreover, in all three cases the se-
quences of numbers n which have exactly r representations in the form
n=w-+u, *=Kk-+uor n=wv+v (k<l), wil almost surely have
a positive density for each value of r (r = 0,1,...) and these densities
form a Poisson distribution. In § 5 we shall show that the number f(n)
of representations of » in the form n = #,+ v has, in case it tends to -+ oo,
a normal distribution in the limit. In § 6 we generalize these results for
sums of more than two terms of a random sequence of integers. In § 7
we consider the distribution of differences of a random sequence. §8
deals with random sequences », of the order k***, where ¢ > 0 is arbitra-
rily small, for which the number f(n) of representations of » in the form



f = ¥+ 18 almost surely bounded. This result is connected with a prob-
lem of 8. Sidon ([4], [5]). § 9 deals with great values of f(n) while § 10
contains the proof of the strong law of large numbers for f(n). Finally
in § 11 we give a stochastic analogon of Romanoff’s theorem [6], accord-
ing to which the sequence of those numbers » which can be represented
in the form n — p-+a*, where p is prime and & > 1 an integer, has pos-
itive density, while § 12 contains a similar but more general theorem.

Some of the results proved in detail in the present paper have been
announced without proof in a previous paper [3] of the first-named author.

Throughout the paper we use the following notation: P(...) denotes
the probability of the event in the brackets. We denote random events
by capital letters; A denotes the event contrary to A; if A and B are
events, let A+ B denote the event consisting in the occurrence of at
least one of the events 4 and B, and let AB denote the event consis-
ting in the joint occurrence of the events A and B. We denote random
variables by Greek letters £, #, v, u etc. M(£) denotes the mean value
and D?(§) the variance of the random variable £ M(£|A) denotes the
condifional mean value of & under condition A. C,, C;, ... denote posi-
tive constants.

§ 1. Random sequences of integers. The notations introduced in
this section will be used throughout the paper.

We define the random sequences of positive integers dealt with in
the present paper as follows: Let &, (» =1, 2, ...) be a sequence of com-
pletely independent random variables such that &, takes on the values 1
and 0 with the corresponding probabilities p, and (1 — p,), i. e. we suppose
that

(1.1) P& =1) = Py P&, =0) = 1—Pn,

where p, is an arbitrary sequence of numbers such that 0 <p, <1
and

(12) D, Pn = +oo.
n=1

We denote by v, vy ..., %, ... the values of » (in increasing order of
magnitude) such that &, =1. Thus » <7 <..<n<..,§, =1
(k=1,2,...) and & =0 if » <n <w»,,. We call the sequence {u}
a random sequence of positive integers generaied by the sequence {p,} of prob-
abilities. p, is clearly the probability that the number » should be con-
tained in the sequence {v;}. This method of generating random sequences
of infegers has already been used in [3]. Evidently ordinary sequences
of integers are special cases of random sequences of the above type, which
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we obtain if each p, is 1 or 0. Clearly we have
(1.3) Gtbt.otE, =k (k=1,2,..)

and », is the least integer for which (1.3) holds for a given value of k.

It follows by the Lemma of Borel-Cantelli (see [9]) from (1.2) that
the sequence {».} is infinite with probability 1. It follows further from
a variant of the strong law of large numbers (gee [10], p. 438) that putting

(1.4) P(n) = D'm

k=1

we have with probability 1

. Sttt ba
(1.5) ”Lllinm i e 1,
Thus by (1.3) and (1.5) we have with probability 1
(1.6) m 4 =
kestoo P (¥g)

For instance, if p, = o[l/e; (¢ > 0), we have P(ﬂ)NZGV; and thus with
probability 1

. Vi 1
1.7 B ey 2
tL.2) e g

while if p, = ¢/n (¢ > 0) we have P(n)~ clogn and thus

(1.8) tim Vo = 6.
k—4o0

Still more can be said about the sequence {».}. As a matter of fact,
n

by the central limit theorem ([8], p. 130-131), putting V(n) = 3 pi we
have i

( 3 6P ) . N
1.9 ].i .P —-=___—" = ¢ == o d .
B VP(n)—V(n) =7 @ Vor _;,[ oo

It follows that in the case p, = ¢/Vn (¢ > 0) for instance we have

, v — k? [Ac?
11 Bl W7

i. e. the fluctuations of », around k%/4c® are of the order %** and are ap-
proximately normally distributed if k is large.

<o) = P(a),



It may be added that if we change only slightly the probabilities p,,,
all assertions which were true with probability 1 remain true with the
same probability. In fact, according to a theorem of Kakutani [12], this
is true if we replace p, by p, provided that

Pinont
v | Pn (1_?’”)

Thus in the case of p, = ¢/Vn, we may replace p, by p, = ¢/Vn+d/n"
with « > §. We shall see, however, that for our problems still larger
changes of the probabilities are admissible if those changes do not affect
certain averages.

§2. Two independent random sequences. Let {»} and {u} be
independent random sequences of positive integers, generated by the
sequences {p,} and {g,} of probabilities }'p, = 3 ¢, = +o0, i. e. 5, and

M=l n=1
i respectively are the k-th values of n for which &, = 1 and respectively
7s = 1, where the random variables &, #,, ..., &u, 7a, ... taking on only
the values 0 and 1 are completely independent, P(&, = 1) = p, and
P(np = 1) = ¢,. Let f(n) denote the number of representations of = in
the form n = v+ ;. First we prove

THEOREM 1. If

(2.1) lim p, = lim ¢, = 0
M - 0O fis+00
and (1)
n—-1
(2.2) lim Pin-r = 4> 0,
f—st00 fo=

then f(n) has in the limit for n — oo a Poisson distribution with mean
value A, 1. e.

r,—A

(2.3) lim P(f(n) =1) = ; (r=0,1,...).

nsico r.
Proof. As the random variables &gnn_i (K =1,2,...,n—1) are

by supposition independent and
n—1

(24) f) = ) &nas
k=1

] ]
(*) Clearly (2.1) and (2.2) implykf“pk =k2gk = 4 o0.
=1 =]
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Theorem 1 follows from a well-known general theorem of probability
theory (see [8], p. 132-133).

Let S, denote the sequence of those integers n for which f(n) =r;
Theorem 1 suggests that S, will have (with probability 1) a density equal
to Ae*/r! (r =0,1,...). This is in fact true under general conditions,
contained in the following

THEOREM 2. If the independent random sequences v, and ;. are gen-
érated by the sequences of probabilities p, and g, where p, and ¢, are dec-
reasing and tend lo zero, if further (2.2) is satisfied and there ewists
a constant 6 with 0 < 6 < 1 such that

(2.5) Z‘pk =0(n'"% and qu = 0(n'™),
k=1 k=1

then, denoting by S, the set of those positive integers n which have exactly
r representations of the form n = v+, we find that S, has with proba-
bility 1 the density ATe *[r! (r =0,1,....)

CorROLLARY. Under the conditions of Theorem 2 the sequence of all those
integers which can be represented in the form n = v+ u; has with proba-
bility 1 the density 1—e 2.

Proof of Theorem 2. The validity of Theorem 2 is a consequence
of the fact that the random variables f(n) (» = 1,2, ...) are in a certain
sense almost independent, as will be seen from the proof given below.

Let & (n) be equal to 1 if f(n) = r and 0 otherwise. Then we have

26)  M(ep(n) = D PrGniye- Prtnr, ||  (A—Pigay),
Fky (h=1,2,...,7)
where the summation is extended over all r-tuples of different integers
(kyy .-y k) such that 1 <k, <k <... <k, <n—1.
We shall need here and in what follows the following inequalities,,
valid for any sequence a,, a,, ..., ay of positive numbers:

N . N o i r
("g': ) (ké‘l %) (2) (,g; a)
‘.2:7) r l_'__ﬁr_'" “‘-<-‘. a;‘lﬂks...akr -.g _.r' e
. (X “k)z 1<ki<ka<...<kp<N !
k=1

The upper inequality in (2.7) is trivial; the lower inequality, which has
already been used in a previous paper ([7], p- 27) of the authors, also
eagily follows from the polynomial theorem.

It follows from (2.6) by using (2.7), with respect to (2.2) that

et

(2.8) lim M (e, (n)) = (r=0,1,...).
—-+00

!



Now we consider M (e, (n)e,(m)) for n < m. Let A4, denote the event
& = q,.._,, = 1},. r=1 and Bk the event n, = &, _x = &m_x = 1; further

put, A = Z‘A,, and B = ZB,:, then we evidently have

M (e, (n)e,(m)| AB)P(AB) = Z'?qua_kl---pk,Qn—k,Pll @3y - Pty m—1, X

X [l O-pga 00— pign),
ktky bl (i=1,3,...,7)

where 3 denotes that the summation is extended over those pairs of
rtuples 1 <k, <k <..<k<nandl<l <l,<...<l <m which
are disjoint (k; #= ;) and such that the »-tuples (n—k,, ..., n—k,) and
(m—1,,..., m—1) are also disjoint. Thus

(2.9) M (e,(n) & (m)| AB)P(AB) < M (ey(n)) M (e, (m)).
Now clearly 2-B — A+B and thus
(2.10) M (e (n)e,(m))
= M (e (n)&,(m)|A+B)P(4A+B)+M (e,(n)e,(m)| 4- B)P(AB)

and as g, (n)e.(m) <1, we have
n—1

(211)  M(e(n)e,(m)|A+B)P(A+B) < P(A+B) < 3 (P(4y)+P(By).

k=1

Thus from (2.9), (2.10) and (2.11) it follows that
n—1

(2.12) M (e, (n)ep(m)) — M (e (n) M (e, (m)) < z (P Gn—kGm—i+ Qi Pnic Pm—i)
-]

and thus
(2.13) B (e (1) (m)) — I (e () 2L (e (m)

n-1

g (qﬂl—ﬂ+pﬂ-‘5) Z pkgl—t "‘g OI(Q’H—“-*— pﬂl'—ﬂ)'
=1

Let us denote by {,(N) the number of those values of » < N for which
f(n) =r, i. e. put

N
1
(2.14) (W) = Z &(n).
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It follows from (2.8) that

P ) 2’8_1
(2.15) lim M (;,(N)) = =
Neatoo r.
further, by (2.13) and by our supposition (2.5) we have
N-1
N—k 1
1) D) <6 ke = 0[5,
k=1

Thus by the inequality of Chebyshev (see [9]) we obtain for ¢ > 0

1
(2.17) P(|t(N) =M (5 (V)| > &) = O(F).
Thus the series
(2.18) D P(|6(Ny)— M (,(Ny))| > e)
=1

is convergent if N; = [j*] for any & > 0 and thus by the Lemma of Borel-
Cantelli and by (2.15) we have with probability 1

[ |
(2.19) lim (. (N;) = — (r=0,1,..).
400 r.
Since evidently for N; < N < N;,
N, N,
(2.20) (V) o < Ge(B) < G (W) 22
Ny Ny
and clearly lim Vi1 = 1, it follows from (2.19) that with probability 1
f>+o0 ]
1?6—2
(2.21) lim {(N) = —; (r=0,1,...).
Neptoo r.

Thus Theorem 2 is proved. The Corollary is an evident consequence
of the assertion of Theorem 2 for r = 0, since the sequence of those num-
bers » which have at least one representation in the form »n = ».+
is the complementary set of the sequence S,.

Clearly if p, = a/Vn and g, = b/Vn with @ > 0, b > 0 then

k-l
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and finally

n—1 f—1
D oe=0n"), g =0@");
k=1 k=1

thus the conditions of Theorem 2 are fulfilled with A = abr and 6 = }.

§3. A square and a random integer. In this section we consider
the sums %%+ u; where {y4;} is a random sequence generated by the se-
quence of probabilities {g,}. For the sake of simplicity we restrict our-
selves to the special case ¢, = ¢ /I/ﬁ (¢ > 0), though our result could be
proved also under more general suppositions.

THEOREM 3. If P(n, = 1) = ¢, = ¢/Vn with ¢ > 0 and f(n) denotes
the number of representations of n in the form n = k*+- u;, then, if we denote
by 8, the sequénce of integers n for which f(n) = r, 8, has with probability 1
the density ATe™*[r! where A = ex[2 (r = 0,1, ...).

Proof. The proof follows the same pattern as that of Theorem 2.

Let &(n) be equal to 1 if f(n) = r and 0 otherwise. Then we have

d g
(3.1) M(e(n) =2 Vin—7)...0n—) IY (1_ ]/ﬂ—jz)s

i#ip(h=1,2,...,r)

where the summation is extended over all r-tuples of different integers
Jis Jzy «eey jp With 3 < n. Now clearly if n = N24-h(h =1,2,...,2N+1),
then

1 c dw 1 1
o X =l et ok

1<ii<n

therefore

¥

(3.3)  M{ep(n)) =

B ?*ﬁ*"(‘%))

7!

(.1;_6 +Vi}; ‘!‘O(%a'))r exp‘ (-mc e

and thus
1 (re[2) e 1
(3.4) F"Z_:M(s,(n)) - —T—(L{—O(ﬁ)).

Now let us find for n < m the mean value of &.(n)e,(m). Let Hy denote
the set of integers N—1,N—4,..., N—#k2,..., N—[VN]®. Then the
intersection of the sets H, and H,,, which we denote by H, H,,, does not
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contain more than d(m—n) elements, where d(N) denotes the number
of divisors of N. As a matter of fact, each 1< H, H,, is of the form | = n—j*
= m—h?, i. e. corresponds to a representation of m —» in the form m —n
= h?—j2 = (h—7)(h+j). Now every decomposition of m—mn into the
product of two of its divisors of the same parity m —n = d, d, corresponds
to exaectly one number leH,H,, namely to I =n—j2 = m—h* with
h = (d;+dy) /2, ] = (d,—dy)[2, and thus our assertion is proved.

Now let A,,, denote the event that &=0 for all leH,,. Then we have

(8.5)  P(Aym) = ” (1—pi) = [] (I_Vmik=)°

leHym h=(dy - dg)/2,d; dg=m—n

We distinguish two cases. Let E denote the class of integers N for which

3 3,—
N is contained in an interval s2—V3, $2+Vs (s = 2,3,...). If N is not
in H, we have by (3.5)

(3.6) P(Ap) = 1— O(d(m “’) ( }n)

if m = m,, in view of d(N) = O(N®) for every ¢ > 0 (see [15], p. 260).
Evidently under the condition A,, the random variables &.(n) and
& (m) are independent; thus if m is not in E, we have

M(sr (m)}Anm] == M(s,(m)) +0 ( 113 )’

1
M(Er(”)fﬂ-nm) == M{S,.(?%)) +0 (W)
and

(el ) = 3 ) () )0 1)

= M(e,.(m)).M(e,.(ﬂ)H— 0 ( ”13)

It follows that

(3.7) ZN: ZN,‘[M (e (m) & (n)) — M (&, (m)) M (e, (n))]

n=1 M=1

=o' to(y 3 1).

meE,m<N
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Since

(3.8) D 1=0(x%),
meE m<N
it follows that

N N
(3.9) 2 Z IM‘&(‘R) 8;-(?%)) *—M‘E,. (n))M(s,(m))] o= O(N““’) .

Thus putting

N

1
(3.10) L) — —fg;a,(n)
we have

et i\
(3.11) M((,(N)) = - +O(i/}\?)
and

1

(3.12) D’(cr(N)) == O(-ﬁﬁﬁ).

By the inequality of Chebyshev we obtain for any e > 0

r_—a l
(3.13) P( G- > e) . o(w).
Thus the series
o9 zre—.l
(3.14) gP( G- | > a)

is convergent.
Since this holds for any & > 0, it follows by the Borel-Cantelli lemma
that with probability 1

Are—l
(3.15) lim (,(NY) = ' (r=0,1,...).
N+t r.
Since
. -N"_”_l)N
lim =1
N—~+oo( N !
it follows, as in the proof of Theorem 2, that with probability 1
] Arg-—l
(3.16) lim {,(N) = Y (r=0,1,...),
Notoo 5

which proves Theorem 3.
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§ 4. Sum of two terms of the same random sequence. In this sec-
tion we prove

THEOREM 4. Let v, be a random sequence of positive iniegers gemer-
ated by the sequence of probabilities p, such that p, is decreasing and tends
to 0; further, let
(4.1) lim ' piepai = A

"—*+°°k.<»;z

and for somé & with 0 < d <1

(4.2) Z Pe = O(n'7%).
=]

Let f(n) denote the number of representations of n in the form n = v+
with v. < v, and denote by S, the sequence of those integers n for which
f(n) = r. Then 8, has with probability 1 the density "¢ *[r! for r = 0,1, ...
Especially the set of those intégers m which have at least one representation
in the form n = w+v with k <1 has the density 1—e™>.

The proof of Theorem 4 follows exactly the same pattern as that
of Theorem 2 and thus may be left to the reader. Clearly if p, — a/Vn
with @ > 0 then the conditions of Theorem 4 are fulfilted with A = na?/2
and 4 = }, since

£ 1 1
& Pn— :a’f-————‘i'o(—-—): +0 ( )
k%:p Pastk § l/w(l—w) Vn Vn

further

2 P = 0(Vn).

koni2

Let us mention that if we define f*(n) as the number of all represen-
tations of n in the form n = ».+»; without the restriction », < v, then
clearly f*(n) = 2f(n) if n is odd and f*(n) = 2f(n)+ &nz if n is even.

Clearly the sequence of those even numbers 2k for which & = 1 has
the density 0, as a matter of fact, if N, denotes the number of such

integers 2k < 2N, we have
1 N
ey = NZ

!!'

and thus

M(ny) = (—V:)
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This implies
D M) < +o0;
therefore with probability 1
s
and thus also
lim 5, = 0.

Tt 00

Thus it follows from Theorem 4 that if S} denotes the sequence of those
integers n for which f*(n) = r, then 8}, has with probability 1 the density
Ae~*[r! while 83, has the density 0 (r =0, 1, ...).

§ 5. On random sequences for which f(n) - oo. Let us choose
a sequence {p,} of probabilities so that putting

(5.1) A,0) = Y PrPu-i
k<n|2

and

(5.2) Ay(n) = Y pivhs
k<nj2

we shall have

(5.3) lim (4,(n)—A4;(n)) = +oo.
00

Let », denote the random sequence of integers generated by the
sequence p,, in the sense of § 1. In that case the number of representations
of » in the form n = v, v, with k <1 is in the limit for 7 —-co normally
distributed. This is expressed by the following

THEOREM 5. Let {p,} be a sequence of probabilities such that if A,(n)
and A,(n) are defined by (5.1) and (5.2) respectively, then we have (5.3).
Then, denoting by f(n) the number of representations of n in the form n = v+
with k <1, we have for —oco <@ << 400

( f(n)—A,(n)
‘/Al (n) —A;(n)

(5.4) lim P

- 00

<m) = &(a),

where D(x) denotes the standard form of the normal distribution function,
i. e

(5.5) ®(z) — V;_“ i Py
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Proof. f(n) = D' &&u_x, where the random variables &, are inde-
k<nj2
pendent and P(& =1)=pg, P& =0 =1—p; (k=1,2,...). It
follows that

M(f(n)) = Ay(n) and  D*(f(n)) = A,(n)—4,(n).

Since the conditions of the central limit theorem of probability theory
(e. g. Lindeberg’s conditions, see [8]) are fulfilled, (5.4) follows imme-
diately.

The conditions of Theorem 5 are clearly fulfilled, e. g. if p, = o (n)/Vn
where w(n) - + oo and w(n)[l/ﬂ <g< 1.

A similar result holds for the number of representations of n in the
form n = k®- u; where {z] is a random sequence of integers generated
by a sequence of probabilities ¢, such that putting 4,(n) = SZ‘ q, ;2 and

kc<n
Ay(n) = ;ﬁ_k, we have A,(n)—A,(n) > +oo; thus for instance if ¢,
ké=n
= w(n)[Vn with o(n) > +oo and w(n)/Vn < g < 1. In this case if we
denote by f(n) the number of representations of the number » in the form
n = k4w, (5.4) is valid.

§ 6. Sum of more than two terms of a random sequence. The
results obtained in the preceding sections can be generalized to sums of
more than two terms. As an example we prove the following

THEOREM 6. Let v, be a random sequence of integers generated by the
sequence of probabilities p, = ¢/n'~"* where 3 > 3 i3 a positive integer and
¢ > 0. Let f(n) denote the number of representations of the number n in the
form m = vy +vpy+... g, with ky < ky < ... < k. Let S, denole the se-
quence of those integers n for which f(n) =r. Then S, has with probability 1

8 8
the density A"e*[r! where A = G—I;('lﬁ)— (r =0,1;...).

Proof. Let us put &(n) =1 if f(n) =r and = 0 otherwise. Now

we have

(6.1) lim Z Pry Pry - - - P,

Hrachoo kp<kg<...<kg
kl+k2+ .+ks-ﬂ

_01 dw, . dx, dxs_y dw,_,
it oﬂii-ﬁl(i='1:2',...,s—l)m:_”8 " anl et A—e . —a
Zy-+Zg+...+Tg_ <1
and the infegral on the right of (6.1) is equal to I'(1/s)*. Thus putting
- (e:r.l“(l1r /8))°
8!

(6.2)

’
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we have

et

(r=20,1,...).

r!

(6.3) Km M (e, (n)) =
To—p 400

The estimation of M (s, (n)e,(m)) can be obtained as before, and Theorem 6
is proved in the same way as Theorems 2-4.

§ 2. Differences formed from a random sequence. Let {».} be a ran-
dom sequence generated by the sequence of probabilities {p,}. Let g(n)
denote the number of representations of » in the form n = »,—»;. Clearly

(7.1) Mg(n) = > pabaik-
k=1

Two cases are possible: either M(g(n)) is infinite, which is of minor
interest, or it is finite for every n. The latter is the case if for instance

oo
J'pi < +oo. In that case, however, we have lim M(g(n)) = 0. Hence it
k=1 st 00

ig clear that here we cannot hope to obtain similar results to those
we obtained for the sums w»,+». More reasonable results can be
obtained if we consider only representations n = »,—#»; for which
v < (1+B)n where B is a posifive constant not depending on n If gg(n)
denotes the number of such representations of =, we have, putting

P = oVk (¢ > 0),
dx

B
3 | P o, S .- BilOR
(12)  lim M(g(n) = o of e log(B+1-+-VB*+ 2B).

It ean be shown by the same method as that used in proving Theorem 2
that the following theorem holds:

THEOREM 7. Let the random sequence v; be generated by the sequence
of probabilities p, = ¢ [l/; (c > 0);let gg(n) denote the number of represen-
tations of n of the form n = vy—v; where v, < (1+B)n (B > 0); then the
sequence of those integers m for which gp(n) = r has the density A e™*[r!,
where A = ctlog(B+1-+V B2+ 2B). Especially for B = (e—1)2/2¢ we have
A =c%

§8. On random sequences for which f(n) is bounded. S. Sidon
({71, [12]) considercd such sequences {a;} of positive integers that the

sequence of coefficients of the series ( ) #%)’ is bounded. He called such se-
K21
quences B;-sequences (I = 2, 3, ...). We shall call a sequence {a;} a B;(K)

sequence if the coefficients of ( Y ™)’ are all < K. The interesting ques-
k=1
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tion is how dense a B;(K) sequence can be. It has been shown by Erdos
[3] that there exists a B,(1) sequence {a;} such that a; < ck®, while
Erdos and Turdan [11] (for a detailed proof see [13]) have proved that

for every B,(1) sequence one has limsupag/k?* = oo,
k—+00

We shall prove in this section that if {»,} is a random sequence gen-
erated by the sequence of probabilities p, = ¢/n'*** (¢ >0, > 0)
then with probability 1 », is a B, sequence.

Thus we shall prove the following

THEOREM 8. Let v, be a random sequence of positive integers gener-
ated by the sequence of probabilities p, = c¢[n'*™ where ¢ > 0 and 0 < ¢ < 3.
Let f(n) denote the number of répresentations of n in the form n = y+n
with k < 1; then with probability 1 f(n) is bounded; moreover with probabi-
lity 1 f(n) < [1/2¢] ewcept perhaps for a finite number of values of n.

Proof. Let &, have the same meaning as in § 1. Then f(n) = ' &&,

k<n)2

and thus, taking into account that

1/2

dx t
I * n-k] = 0 ”,=—3I ’
n_ir:loon (k;,;pkp k) ¢ 5[ [r(l—a) P 20 (&)
we have
e 2(e'—1) I
@1y uee) =[] (H(k(if-k)))fm.) <o = ns-) E

k<n/2
for n = n, where

_rid—ep

I(e) = B(}—¢,3—¢) = m-

Here and in what follows B(a, 8) denotes the beta-function of Euler

I'(a)I'(B)
I'(a+p)

We infer, choosing ¢ = log(1+ »™), that

(8.2) B(a,f) = [a(1—af 'do = for a>0,8>0.
1]

e1(e)
(8.3) P(f(“) = K—i—l) < PEEED”
Thus if K-+1 > 1/2¢ the series
(8.4) D Pli(n) > E+1)

b |

Acta Arithmetica VI. 7
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is convergent. It follows from the Lemma of Borel-Cantelli that with
probability 1 f(n) < K except for a finite number of values of n; we may
choose K = [1/2¢]. Thus Theorem 8 is proved.

Note that from (1.8) we have v, ~ (k/c)¥*~*). Thus for any é > 0 there
exist sequences {a;} such that a; = O(k**’) and the number f(n) of repre-
sentations of » in the form n = a;+4 a; is bounded. As a matter of fact,
if we choose p; = 1/(k'?**) with &£ = 8/(4-+26), almost all realizations of
the corresponding random sequence {»,} may be taken for {a;}. Of course
(as is usual if a number-theoretical statement of existence is proved by
probabilistic methods) our methods do not give an effective construec-
tion.

By the same method one can prove the existence of B;-sequences
{a;} such that a; = O(%*+?) for any 6 >0 (1=3, 4,...).

§9. A theorem of the ,iterated logarithm” type.

TuEOREM 9. If thé random sequence {»,} is generated by the sequence
of probabilities p, = ¢ Il/fn (¢ > 0) and f(n) denotes the number of solutions
of m =+ (k<l), we have with probability 1

f(n)loglogn

9.1 limsup ———— =1
( ) n-»+oop logn

Proof. First we prove that with probability 1

logl
n—+60 logn

1
Clearly for any ¢ > 0 if n > n, and R = [(1+2£) L I
loglogn

(k‘é“mc2 VE(n—Fk))

P‘j(‘n) ; -R) é-. 2 ?k;pn—kl---PkRinkR ‘-'-..‘(; R‘ y
and thus

1 1
(9.3) P(j(n) > (14-2) 10;?):”) - O(F).

i logn
It follows that the series ZP()‘(n) > (14 2¢) T
gent for any ¢ > 0, and thus by the Borel-Cantelli Lemma it follows that

(9.2) holds.
Now we prove that with probability 1

logl
fi—b4-00 logn

) is conver-
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To prove (9.4) we need a lower estimate for P(f(») > R); we have by
(2.7) for B = [(1— ]+1 and n > n(e)

loglo n
1
(9.5) P(f(-n) = R) = e
e . logn . .
which implies that the series ZP fin) 2(1—25)1 o is diver-
gent. I’fg ogn

Now let A4, denote the event f(n) > (1— 23)

; the events
n

A, (while not independent) are almost pairwise mdependent in the follow-

i gsense:
ne N N

2 2 P(4,4,)
(9.6) lim =171 =1.
Nostoo (“éul P ( A”))s

As we have shown in a previous paper [16], this is sufficient for the val-
idity of the Borel-Cantelli lemma and thus (9.6) and (9.5) imply (9.4).
That (9.6) holds can be shown by the same method as that applied in
the proof of Theorem 2 in estimating M (s,(n)e,(m))—M (e (n)) M (e, (m)).

§ 10. The law of large numbers for f(n). In thid section we prove
THEOREM 10. If the random sequence {v,} is generated by the sequence
of probabilities p, = ¢[Vn (¢ > 0) and f(n) denotes the number of solutions
of m = v+ with k <1 then with probability 1
r X
(10.1) im — > f(n) =4,

N—r+on nel
where A = ¢*r /2.
Proof. Putting

N
tw =~ 31

n=1
and in view of

N
D1VE =2Vn+0(1),

k=1
we evidently have

: 1
M(ty) = csof ad dx+o(ﬁ).
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Since

f]/l - do = Bl(#& *%’

where B(a, 8) is Euler’s beta function (see (8.3)), it follows that

et 1
i vx)
On the other hand, we obtain by some easy calculations
10¢® 1
10.3) D(ly) = ——= +0{—].
( v =3y (N )

Thus by the inequality of Chebyshev

P(ty—A > ¢) = o('/_lf-).

It follows that the series

D P([Lys—3] > ¢)

N=1
is eonvergent for every ¢ > 0; by the Lemma of Borel-Cantelli this implies
that with probability 1

(10.4) lim Zys = A.
No+too

On the other hand, we have for 4 < B < 34/2

B
M D jm) ~(B~A)2

fn=d-41
and

B
(10.5) Dz( b f(n)) =o((BV_;)g).
= A41

Thus we have

M
P( Max \ f(n)l > sl\”) == O(

N3<MQIN+1)3 N3+1

Na;z)

and therefore for any ¢ > 0

(10.6) jP( ] Z j(n)[ > ) < +oo.

N=1 N3<Mg(’\?+1)3 N1
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(10.4) and (10.6) imply that with probability 1
(10.7) lim Zy = 4.

No+oo
Thus our Theorem is proved.

N
To obtain the limiting distribution of ( }'f(n)—AN)/N** the higher
n=1

moments have to be caleculated. We do not investigate this question
here.

§ 11. Stochastic analogons of Romanoff’s theorem. N. P. Romanoff
proves [5] that if p denotes primes and a4 > 1 an integer, then the set of
integers » which can be represented in the form n =a*+p (k=1,2,...)
has positive density. Erdos [14] has shown that if @ (2) is a polynomial,
then the sequence of numbers » which ean be written in the form
n = Q(a*)+p also has positive density. In this section we shall consider
stochastic analogons of these theorems. First we replace the sequence of
primes by a random sequence {x;} generated by the sequence of proba-
bilities g, = bflog(n+1) (b > 0), in which case by (1.6) we have with
probability 1 u; ~ bllogl, i. e. for b = 1 the sequence y; has the same order
of magnitude as the I-th prime number.

We prove the following

THEOREM 11. Let the random sequence (1) be generated by the sequence
of probabilities ¢, = bflog(n+1). If f(n) denotes the number of representa-
tions of n in the form n = ap+ py, where a, < a, <...<ap<... 18 a given
sequence of integers such that kiim Il;/ak = ¢ ewists, and 0 < a < +oo,

400
and 8, i8 the sequence of those numbers n for which f(n) =r (r =0,1,...),

then 8, has with probability 1 the density (ab) e~%/r!.

Proof. The proof of Theorem 11 is analogous to that of Theorem 2.
Putting e.(n) =1 or 0 according to whether f(n) = or f(n) £ r, and
taking into acecount that if »’ is defined by a,, <n < a,,,, then by suppo-
sition »’flogn — a, we obtain

n'

b
—————— =agb 1).
e log (n—a4-1) #rt log(n—a, +1) +o(t)
It follows that
1 (ab)" e~
NEIEN}—ZM(Er(ﬂ))=———’;!—— (r=20,1,...).

Taking into account that the number of quadruples (n,m, a;, @) with
n<m<N and a; < a; < N sueh that n—a; = m—a; is evidently of
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order Nlog®N, we obtain

(#Ze.( w) = o(*EF),

Ne=]

and the proof can be completed as that of Theorem 3.

Another possible stochastic analogon of Romanoff’s theorem could
be obtained by considering the sums n = w,+p where », is a random
sequence generated by t‘.he probabilities p, = ¢/n (¢ > 0) (which implies

according to (1. 7) lnn l/v;‘ = ¢°) and p is a prime. In that case, denoting

by f(n) the number ot representations of » in the form n = »,+p, we

have
Hfim) = Y,

p<n|

where the summation is extended over all primes p < n; this sum is very
gensitive to the irregularities of the distribution of primes and thus this
problem requires careful separate consideration. If, however, we replace
the sequence of primes by a sequence {u} of similar growth but more
regular behaviour, then these difficulties disappear.

We consider the case where both sequences are random in the follow-
ing section.

§ 12. The sum of a dense and a rare sequence. In this section we
ghall prove a general theorem, which is of the same type as Theorem 2
and which covers some cases in which condition (2.5) is not satisfied.
This theorem runs as follows.

THEOREM 12. Let {v} and {u) be independent random sequences of
integers, generated by the sequence of probabilities {p,} and {q,}, where the
sequence ¢, 8 decreasing. Let us put

n n
(12.1) Pn)= Dy and  Q(n)= 2%
k=1 -]
and suppose that P(n) — +oo, Q(n) — +oco for m — +oo and that for
any p > 0 we have
o 2mp)
2.2
s ﬂ--+oo Q(”)

Further, let us put

n-1

(12.3) o = Z Prln-k
k=1
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and
(12.4) R(n) = an;,.
Suppose that -

(12.5) ey 2B a0

nrtoo N

Let f(n) denote the number of solutions of n = v+ p; then the sequence 8,
of numbers n for which f(n) = r has with probability 1 the density A"e ™ *[r!
fr=0,1,2,...).

Remark. Clearly it follows from (12.2) that condition (2.5) is not
fulfilled. Thus Theorem 12 can be applied in cases where Theorem 2 is
not applicable.

Proof of Theorem 12. For the proof we shall need some results
of a Tauberian kind.

LEMMA 1. Let d; be a sequence of positive numbers, a = 0. Put

(12.6) D@y = D
k<y
and
(12.7) d(@) = D) dpa*,
k=1

If the series (12.7) is convergent for [®| <1 and for every p > 0 we have

_ dl® 1
2.8 im ——— L —
(12.8) Jlim S0 = 2o
then we have
. d(z)
e Jm i floga™) —
and thus
.. D(py) a
12.10 lim 2 _ pe,
(12:20) A0 D)

Conversely if (12.10) holds then (12.7) iz convergent for || < 1 and (12.9)
and thus (12.8) is valid. In other words, (12.8) and (12.10) are equivalent.

Remark. The first assertion of Lemma 1 is due to J. Karamata
[17], the second to N. G. de Bruijn and P. Erdos [18].
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LEMMA 2. Let {pi} and {qi} be two sequences of positive mwmbers,
and put

n—1
(12.11) e = ) Prby_i-
=1
Put
(12.12)  P(n) = zfpk, Q) = Y'qe, E(n) = Y.
=1 =1 k=1
Suppose that for every p > 0 we have
. Q(py) . R(py)
12.13 lim =p* and lim —— = p”
( ) v>+o0 Q(Y) g y—>+oo L8(Y) .
where 0 < a < y. Then we have
. P(n)Q(n) I'(l1+y)
12.14 lim = i
e o Em) IO aI1+y—a)

Remark. Lemma 2 is due to N. G. de Bruijn and P. Erdos [18].
Now we are in a position to prove Theorem 12. Let us put

(12.18) p(2) = D ped®,  q@) = D qud®  and  r(a) = Y nat.
k=1 k=1

Je==1

Applying Lemma 1 (with « = 1) we obtain with respect to (12.2) and (12.5)
r(a®) 1

(12.16) Hm 4(=") = 1 and lim —.
zs1-0 ¢(®) P Tl—g i"(""'3') 4

Since by (12.3) we clearly have

(12.17) p(®)g(z) = r(2),
it follows that

(12.18) jim 2 _ 4
z—»1-0 P(2)

Applying again Lemma 1 (with « = 0) we obtain

(12.19) i S8

fi—s-too P(“)

1 for any p > 0.

Thus we can apply Lemma 2 with y =1 and e = 0 and obtain

(12.20) o, NN

nstoo H

Ao
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Denoting by E(N) the number of values of % for which », << N we have,
by (1.5), with probability 1

(12.21) Wi 1S
’ N—s+oo P(N)

Let {a;} be a fixed realization of the sequence {».} for which (12.21) holds.

(12.22) b= X g
ap<n
and
N
(12.23) T(N) = ZIt,,.
M=

Then we evidently have

(12.24) T(N) = Y QN—a).

ap<N

On the other hand, if ¢, =1, if n = a; and ¢, =0 if ap <n < a,,
we have

]

-1

(12.25) b= D, Qn—rt-
ke=1
Let us put
(12.26) e(w) =;‘ekw"
=1

and

(12.27) t(x) = Zw".
k=1

By virtue of (12.21) and (12.19) we may apply Lemma 1 with « = 0
for the sequence e,; we obtain

(12.28) T
z—1-0 €(2)

Since by (12.27) we have

(12.29) t(x) = q(w)e(x),

it follows from (12.28) and the first relation of (12.16) that

t(a”) .

(12.30) m ~];
z»1-0 t(2) P
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Applying again (in the opposite direction) Lemma 1 with a = 1 for the
sequence 1,, we find that for p > 0

. T(pN)
12.31 Iim ————— =
( ) Nesdoo T(N)
Applying again Lemma 2, by (12.31) we have
E
(12.32) fi SR 5

nstoo L (M)
and thus with respect to (12.21) we obtain
PmQm) _

12.33
( ) nsioo  T(M)

and finally with respect to (12.20)

(12.34) TRl .
fistoo N

A.

Now, since g, is decreasing, we clearly have

(12.35) Q2n)—Q(n) = D g < ngy
n<k<2n
and thus
. N . Q(2r)—Q(n)
12.36 liminf —— > lim —————— =1,
( ) nstoo Q(n) - 400 Q(n)
On the other hand, we have by (12.25)
(12.37) ln = guE(n)
and thus by (12.20), (12.21) and (12.36)
(12.38) liminfi, > A.
n—+o0

Thus the sequence f,, which according to (12.34) is (C, 1)-summable
to the limit 4, is such that its inferior limit is not less than A. This clearly
implies

(12.39) liminft, = A.

400

Now we need the following (well-known)
Lemma 3. If a sequence t,, i8 (C, 1)-summable to the limit A and liminf i,

f—s400
= A, then for any bounded function g(wx) which is continuous for @ = A the

sequence g(t,) 18 (C, 1)-summable to the limit g(4).
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Proof. The proof of Lemma 3 is very simple; as a matter of fact,
our suppositions imply that for any ¢ > 0 the sequence of those values
of n for which 1, > A+ ¢ has the density 0, whence — in view of the sup-
positions concerning g(«) — the assertion of Lemma 3 immediately
follows.

We can apply Lemma 3 to our sequence t, in view of (12.34) and
(12.39) and for the continuous and bounded functions g,(z) = a"e™"[r!
(r=0,1,...), and find that

.1 \te® e
(12.40) hm—Z O 7 & 0 =L sl

n ! r!
Nr 00 —i r

Let us now define the random variables ¢.(n) as follows: ¢ (n) = 1 if
n has exactly r representations of the form » = @+ y;; otherwise we put
g(n) = 0. It follows that

(12.41) M (Er(n}] — Z qn-n‘l q"““s, R Q!I-Gir ” (1 — q“—ﬂg) %
fj<ip<..<ip k#d':kiin 3
312500ty

Thus we find by (12.40) that

N
1 et
12.42 lim — M = = ved)e
(12.42) S ”E_l (en(m)) = — (r=0,1,..)
Let us now consider the random variable
1 N
(12.43) Lo(N) = w e(n).
n=1
It follows by (12.42) that
Are—i
(12.44) lim M(C,(N)) = : (r=20,1,...).
Notoo r.

Let us now consider the variance of (. (N).
We evidently have

(12.45) D2(Z,(N)) = -;;— (22 [ (e () & (m) — M (e.(n))M(e,(m))]).

=1 m=]

Clearly ¢,(n), &(m) are independent if n—m cannot be represented
in the form n—m = &, —a;, because in that case n—a;, and m—a,
cannot be equal and thus a pair of representations = = a 4+ and
m = a,+ ; With the same y; is impossible. For a fixed pair (k,, k;) the
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number of pairs (n,m) for which n < N, m < N and n—m = @, —ay,
cannot exceed N, and the number of pairs (k,, k,) with @y < N, @), < N
does not exceed CP2?(N) where ¢ > 0. In view of

[M("-‘r(n)ar(.m})_'M(Er(n))-*u(er(m)” <1
it follows that
(12.46) D2(,(N)) = o(

P*(N))
=

Clearly for any ¢ > 0 we have by (12.19)

P(2n)

B(n) <1l+4+e for n =nyle).

(12.47)

This implies that for any é > 0
(12.48) P(N) = O(N%.
Thus we obtain from (12.46) and (12.48)

(12.49) DL, (N)) = 0(%) for any 6 > 0.

Now, exactly as in proving Theorem 2, we conclude that with proba-
bility 1 we have
et
(12.50) lim (V) = .
Nostoo ?’!

Thus the sequence S, of those integers which have exactly r repre-
sentations of the form n = @, u; where {a,} is a fixed realization of
the random sequence {#;}, for which (12.21) holds, has with probability 1
the density A"¢™*[r!.

Since almost every realization {a;} of the random sequence {v}
satisfies (12.21), it follows that the sequence S, of those integers » which
have exactly r representations of the form n = v+ has with proba-
bility 1 the density A e™*/r!.

To show that this last — intuitively clear — step is really admissible,
let us consider the following realization of the probabilistic set-up. Let
the probability space be the unit square of the (#, y) plane, and let the
probability measure P be the ordinary Lebesgue plane measure. A ran-
dom variable is then nothing else than a measurable function ((z,y)
of the two variables # and ¥ (0 <2 <1,0 <y <1). Let us construct
the random variables £, so that they depend only on , i.e. &,(#,y) =
&,(z) and the random variables %, so that they depend only on v, i.e.
(%, ¥) = na(y); suppose that the £,(x) are independent (with respect
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to the Lebesgue measure in the interval 0 <& < 1) and, further, that
the 7,(y) are also independent (with respect to the Lebesgue measure
in the interval 0 < y << 1)); suppose that they have the prescribed distri-
butions, i. e. &,(#) = 1 on & set of measure p,, and 0 elsewhere and, further,
na(y) =1 on a set of measure g, and 0 elsewhere. Then for each point
(@, y) of the square 0 < <1, 0 <y < 1 the sequences », and u; are
well-defined (numerical) sequences of positive integers and thus the se-
quence 8, = S.(#,y) is also uniquely defined for all points (v, y). Now
let E, denote the set of those points (z, y) for which the sequence 8, has
the density A"e*/r! and let E, be the complementary set. According to
Theorem 11 the intersection of E, with the line # = #, (0 <, <1) has
for almost all , the (linear) measure 0; thus by Fubini's theorem E, has
itself the plane measure 0, which was to be proved.

Thus Theorem 12 is proved.

Remark. If p, = a/n (a > 0) and g, = b/log(n+1) (b > 0), then
all conditions of Theorem 12 are satisfied (with A = a¥) and thus the
conclusion of Theorem 12 is valid. Note that in that ease, according to

k,—
(1.7), we have with probability 1 lim ¥, = ¢'®, and denoting by I7(N)
k—++o0
the number of terms of the sequence u; not exceeding N we have by (1.5)
with probability 1 JT(N) ~ bN /log N. Thus this special case of Theorem 12
furnishes another stochastic analogon of Romanoff’s theorem.

It would be possible to prove a more general theorem, which in-
cludes both Theorem 2 and Theorem 12, but to obtain the most general
theorem one has to solve some difficulties of Tauberian type.
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