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§ 0. Introduction . It is well known (see e . g . [1]) that the number
of those integers n < x which can be represented in the form n = k 2+12
(k and l integers) has the order of magnitude x/�logx; as clearl� the num-
ber of pairs k, l of positive integers such that k2 +12 < x is , =14, the
reason wh� the set of numbers which can be represented as the sum of
two squares has �ero densit� is not that the squares are too rare, but -
loosel� speaking - that the� are "too regularl�" distributed, so that
among the sums k2+12 there are too man� equal ones . This was first
demonstrated b� Atkin [2], who solved the following problem, proposed
b� J. E. Littlewood : If each square k 2 is replaced b� a random integer vk ,
chosen according to a certain probabilit� law in the neighbourhood of
k2, then the sums vk + vl almost surel� have a positive densit�.

In § 1 of the present paper we introduce a class of sequences of ran-
dom integers. This construction has been used alread� in [3] . In § 2, 3
and 4 we prove some theorems of a similar character to that of Atkin,
mentioned above . We shall show that if the random sequences wk an(. µ,
have approximatel� the same order of magnitude as the sequence ck2
with some c > 0, then the sequences vk+,a,, V+,u i and vj,+vl will have
positive densit� with probabilit� 1 ; moreover, in all three cases the se-
quences of numbers n which have exactl� r representations in the form
n = vk+ µi , n = k 2+p, or n = vk +v, (k < l), will almost surel� have
a positive densit� for each value of r (r = 0, 1, . . .) and these densities
form a Poisson distribution . In § ó we shall show that the number f(n)
of representations of n in the form n = vk + vi has, in case it tends to + oo,
a normal distribution in the limit. In § 6 we generali�e these results for
sums of more than two terms of a random sequence of integers . In § 7
we consider the distribution of differences of a random sequence . § 8
deals with random sequences vk of the order k'+ a , where s > 0 is arbitra-
ril� small., for which the number /(n) of representations of n in the form



n = vk+vi is almost surel� bounded . This result is connected with a prob-
lem of S. Sidon ([4], [5]) . § 9 deals with great values of f (n) while § 10
contains the proof of the strong law of large numbers for /(n) . Finall�
in § 11, we give a stochastic analogon of Romanoff's theorem [6], accord-
ing to which the sequence of those numbers n which can be represented
in the form n = p +ak , where p is prime and a > 1 an integer, has pOs-
itive densit�, while § 12 contains a similar but more general theorem .

Some of the results proved in detail in the present paper have been
announced without proof in a previous paper [3] of the first-named author .

Throughout the paper we use the following notation : P ( . . . ) denotes
the probabilit� of the event in the brackets . We denote random events
b� capital letters ; 9 denotes the event contrar� to A ; if A and B are
events, let A+B denote the event consisting in the occurrence of at
least one of the events A and B, and let AB denote the event consis-
ting in the joint occurrence of the events A and B. We denote random
variables b� Greek letters v, µ etc . M(�) denotes the mean value
and D 2 (�) the variance of the random variable �. M(� JA) denOtes the
conditional mean value of � under condition A. Cl , C,, . . . denote posi-
tive constants .

§ i. Random sequences of integers . The notations introduced in
this section will be used throughout the paper .

We define the random sequences of positive integers dealt with in
the present paper as follows : Let �n (n = 1, 2, . . .) be a sequence of com-
pletel� independent random variables such that n takes on the values 1
and 0 with the corresponding probabilities p,, and (1- pn), i . e. we suppose
that

(1.1)

	

P(�n = 1) = P., P($n = 0) = 1- P.,

where pn is an arbitrar� sequence of numbers such that 0 < pn < 1
and

00
(1.2)

	

I p. = + oo .
n=1

We denote b� v l , v 2 , . . ., vk , . . . the values of n (in increasing order of
magnitude) such that �n = 1. Thus vl < v 2 < . . . < vk < . . ., ��k = 1
(k = 1, 2, . . .) and �n = 0 if vk < n < vk+, . We call the sequence {vk}
a random sequence of positive integers generated b� the sequence {p n } of prob-
abilities . pn is clearl� the probabilit� that the number n should be con-
tained in the sequence {vk} . This method of generating random sequences
of integers has alread� been used in [3] . Evidentl� ordinar� sequences
of integers are special cases of random sequences of the above t�pe, which
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we obtain if each pn is 1 or 0 . Clearl� we have

(1.3)

	

�1+ �,+ . . .-}- �,k = k

	

(k = 1, 2, . . .)

and vk is the least integer for which (1 .3) holds for a given value of k .
It follows b� the Lemma of Borel-Cantelli (see [9]) from (1 .2) that

the sequence {vk} is infinite with probabilit� 1 . It follows further from
a variant of the strong law of large numbers (see [10], p . 438) that putting

n
(1.4)

	

P(n) _ 1 Pk
k_l

we have with probabilit� 1

(1 .5)

	

lim �1+�2+--
.-� „ - 1

n-).+00

	

P(n)

Thus b� (1.3) and (1 .5) we have with probabilit� 1

k
(1.6)

	

khm P(vk) = 1

For instance, if pn = e/fin (e > 0), we have P(n) � 2cV'n and thus with
probabilit� 1

(1.7) Jim vk = 1
k.-++. k$

	

4c$

while if pn = c f n (c > 0) we have P (n) N clogn and thus
k

(1.8)

	

lm > k = e
k-++oo

Still more can be said about the sequence {vk} . As a matter of fact,
n

b� the central limit theorem ([8], p . 130-131), putting V(n)

	

Pk We
have

n
k-P(n)

	

x

(1.9)

	

lim P	 < x = O(x) = 1  f é "s/sdu .
n-++oo

	

VP (n)-V(n)

	

27C

It follows that in the case pn = c/Vn (c > 0) for instance we have

vk- ks/4c$
(1.10)

	

lim P	s < x = O(x),
n-.+oo

	

k312/2c

i, e, the fluctuations of vk around ks/4e$ are of the order 012 and are ap-
proximatel� normall� distributed if k is large .



It ma� be added that if we change onl� slightl� the probabilities pn ,
all assertions which were true with probabilit� 1 remain true with the
same probabilit�. In fact, according to a theorem of Kakutani [12], this
is true if we replace pn b� pn provided that

	 (pn-Pn)2 G + 00 •
n=1 pn(1- pn)

Thus in the case of pn = e/Vn, we ma� replace pn b� pn = c/Vn+d/na
with a > 1 . We shall see, however, that for our problems still larger
changes of the probabilities are admissible if those changes do not affect
certain averages .

§ 2. Two independent random sequences . Let {vk } and IN) be
independent random sequences of positive integers, generated b� the

00

	

00
sequences {pn } and {qn } of probabilities jpn = jqn = + 00, i- e . vk and

n=1

	

n=1
,uk respectivel� are the k-th values of n for which �n = 1 and respectivel�
?1 n = 1, where the random variables if r11, . . ., n, rin, . . . taking on onl�
the values 0 and 1 are completel� independent, P(�n = 1) = pn and
P(?In = 1) = qn . Let f (n) denote the number of representations of n in
the form n = vk+ p l . First we prove

THEOREM 1. If
(2 .1)

	

lim pn = lim qn = 0
n +00

	

n- +OQ

and (1 )
n-1

(2.2)

	

lim I pkgn-k = > 0,
n-,+00 k=i

then f (n) has in the limit for n

	

+ oo a Poisson distribution with mean
value 1, i . e .

(2 .3)

	

lim P(f (n) = r) _		(r = 0, 1, . . .) .
n- +00

	

r .

Proof. As the random variables 477n-k (k = 1, 2, . . ., n-1) are
b� supposition independent and

n-1
(2.4)

	

f (n) _

	

k?]n-k
k=1

00

	

00
(i) Clearl� (2.1) and (2.2) impl� I Pk = _Yqk = + 00-

k=1

	

k=1



(2.5)
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Theorem 1 follows from a well-known general theorem of probabilit�
theor� (see [81, p. 132-133) .

Let S, denote the sequence of those integers n for which f (n) = r ;
Theorem 1 suggests that S, will have (with probabilit� 1) a densit� equal
to Ar e

-l
/r! (r = 0, 1, . . .) . This is in fact true under general conditions,

contained in the following
THEOREM 2 . If the independent random sequences vk and pk are gen-

erated b� the sequences o f probabilities pn and qn where pn and qn are dec-
reasing and tend to �ero, if further (2.2) is satisfied and there exists
a constant 6 with 0< b< 1 such that

n

	

n

�, pk = 0(n'-a) and

	

qk = 0(nl-e),
k=t

	

k=2

then, denoting b� S, the set o f those positive integers n which have exactl�
r representations o f the form n = v k +,ul, we find that S, has with proba-
bilit� 1 the densit� ;re

-x
/r! (r = 0, 1, . . . .)

COROLLARY. Under the conditions o f Theorem 2 the sequence o f all those
integers which can be represented in the form n = v k -,ul has with proba-
bilit� 1 the densit� 1- a -x .

Proof o f Theorem 2 . The validit� of Theorem 2 is a consequence
of the fact that the random variables f (n) (n = 1, 2, . . .) are in a certain
sense almost independent, as will be seen from the proof given below .

Let E, (n) be equal to 1 if /(n) = r and 0 otherwise. Then we have

(2.6)

	

M (Er (n)) _ I pkl q,,-k l . . . pkrqn-kr

	

I 1

	

(1 -pi q.-j),

where the summation is extended over all r-tuples of different integers
(kl , . . ., k,) such that 1 < k, < k2 < . . . < k, < n-1 .

We shall need here and in what follows the following inequalities,,
valid for an� sequence a,, a2, . . . , aN of positive numbers :

(

	

ak )r

	

(

	

a2) ( r2)

	

(

	

ak)r
(2.7)

	

1 -	N	 <

	

akl ak2 . . . akr <
k=1

r .

	

(

	

�

	

1G

	

r.f a k
)

	

kl<k2< . . .<kr<N
k=1

The upper inequalit� in (2.7) is trivial ; the lower inequalit�, which has
alread� been used in a previous paper ([7], p. 27) of the authors, also
easil� follows from the pol�nomial theorem .

It follows from (2 .6) b� using (2.7), with respect to (2 .2) that

(2.8)

	

lim M(E,(n)) =
Ape`'

	

(r = 0, 1, . . .) .



Now we consider M(e,(n)e,(m)) for n < m. Let Ak denote the event
k = r/n-k = r!m-k = 1 and Bk the event Ilk = �n-k = �m-k = 1 ; further

n-1

	

n-1
put, A = ZAk and B = � Bk ; then we evidentl� have

k=1

	

k-l

= G( ( ) ( )I

	

(

	

)

	

pklgn-kl . . . pk,gn_k,pllgm_i1 . . .p�r qm-Z� X

X

		

(1- pk gn-k) (1 - plgm-Z) �
k#ki, l# li (i=1 . Z	*)

where E' denotes that the summation is extended over those pairs of
r-tuplesl<kl <k E < . . .<k,<nandl<l1 <l� < . . .< 1,<mwhich
are disjoint (ki 11 ) and such that the r-tuples (n-k	n-k,) and
(m-l1f . . ., m-l,) are also disjoint. Thus

(2.9)

	

M(e,.(n)er(m)IA4 P(Ajg- ) < M(E,(n))M(e,(M» .
Now clearl� J•-R = A+B and thus

(2.10)

	

M (E, (n) 8, (M))

= M(e,(n)e,(m)IA+B)P(A+B)+M(E,(n)e,(m)IA'B)P(A .R)

and as e, (n) e,(m) < 1, we have
n-1

(2.11) M(e,(n)e,(m)IA+B)P(A+B) <P(A+B) < 1 (P(Ak)+P(Bk))-

Thus from (2.9), (2 .10) and (2.11,) it follows that
In-1

(2.12) MCer(n)e,(m))-M(e,.(n»M(e,(m)) < J(pkgn-kqm-k+gkpn-kpm-k)
kml

and thus

(2.13)

	

M(e,(n)e,(m))-M(E,(n))M(e,(m))
n-1

< (qm-n+ PM-n)

k=1

pkgn-k < Cl (qm-n+ pm-n) •

Let us denote b� �,(N) the number of those values of n < N for which
f (n) = r, i . C . put

N
(2.]4)

	

�r(N) = N1 e, (n)
n_1
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It follows from (2.8) that

íZre-�
(2 .15)

	

lim M(�r(N)) _
N-,+w

	

r i

further, b� (2.13) and b� our supposition (2 .5) we have

N-1

	

/

(2.16)

	

D2(Cr(N)) -Ca� (Pk_ qk) ( N$ k)
=OI e ) .

k=1

Thus b� the inequalit� of Cheb�shev (see [91) we obtain for e > 0

(2.1?)

	

P(I�r(N)-M(C,(N))I > e) = 0

Thus the series
CO

(2.18)

	

jP(I C,(Nj)-M(C,(NI))I > e)
!__

is convergent if Nf = [ j21° ] for an� e > 0 and thus b� the Lemma of Borel-
Cantelli and b� (2 .15) we have with probabilit� 1

(2.19)

	

lim C,(Nj) = Ar e''

	

(r = 0, 1, . . .) .
l�+OO

	

r .

Since evidentl� for N3 < N < Nj+1

(2.20)

	

�r(Nf)
Ni

< Cr (N) < Cr (Ni+1)
Nf+1

Ni+1

	

N,

and clearl� lim N1+1 = 1, it follows from (2 .19) that with probabilit� 1
i-.+. Ni

r x
(2.21)

	

lim �r (N) _	
e'

	

(r = 0, 1, . . . ) .
N-,+oo

	

r .

Thus Theorem 2 is proved. The Corollar� is an evident consequence
of the assertion of Theorem 2 for r = 0, since the sequence of those num-
bers n which have at least one representation in the form n = vk+pl
is the complementar� set of the sequence S o .

Clearl� if p„ = a/inn and q„ = b/6 with a > 0, b > 0 then

n-1

	

n-1

	

1

	

1

	

ax

	

1,

	

1
pk gn-k = ab�	 = ab f	 -� 0

	

=ab� +0 '�-
k=1

	

k=1 ilk (n-k)

	

n 1�x(1-x)

	

>/n

	

rn
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and finall�

thus the conditions of Theorem 2 are fulfilled with ű = abn and d = 1 .
§ 3. A square and a random integer. In this section we consider

the sums k2+µa where j�j) is a random sequence generated b� the se-
quence of probabilities {qn) . For the sake of simplicit� we restrict our-
selves to the special case qn = ciVn (c > 0), though our result could be
proved also under more general suppositions .

THEOREM 3 . I f P ( ,q, = 1) = qn = c/tin with c > 0 and /(n) denotes
the number o f representations o f n in the form n = k 2 -{- ,al, then, if we denote
b� Sr the sequence of integers n for which f (n) = r, Sr has with probabilit� 1
the densit� ;re-"Jr! where A = en/2 (r = 0, 1, . . .) .

Proof. The proof follows the same pattern as that of Theorem 2.
Let er (n) be equal to 1 if /(n) = r and 0 otherwise. Then we have

(3 .1)

	

M(er (n))

	

1- '�	
c

1 (n-ji)

Cr

. . . (n-j,2.) 7#ih(h=1 .2 r)

	

V n-j2

where the summation is extended over all r-tuples of different integers
ill j2, . . . . jr with jh < n . Now clearl� if n = N2 +h (h = 1, 2, . . ., 2N-á-1),
then

(3 .2)

therefore

nC

	

e

	

1 r
+-+02

	

�h

	

n)

	

nc

	

e

	

1
(3.3)

	

M(er (n)) =	
r�

	 exp1-
\
2 + - F 0(� )��,

n

and thus

1
1

	

� dx

	

],

	

(7-n) ;1
2 i/n-j2

	

u �1-x2 + l�h +O
1�j <n

(3.4)

	

M(e,.(n» _
n=1

n-1

	

n-1

1 pk = 0 (n112)
f

	

1 qk = 0 (n112 ) ;
k_1

	

k=1

(nc/2 ) r e -ac/2

r! \1

+
o

(4 1

»

.

1�N

Now let us find for n < m the mean value of e r(n) er (m) . Let HN denote
the set of integers N-1, N-4, . . ., N-h2 , . . ., N-[VN]2. Then the
intersection of the sets Hn and H7,, which we denote b� HnH., does not



contain more than d (m - n) elements, where d (N) denotes the number
of divisors of N. As a matter of fact, each l EH„H,,, is of the form l = n-j2
= m - h2 , i . e. corresponds to a representation of m - n in the form m - n
= h2-j2 = (h- j) (h+j) . Now ever� decomposition of m-n into the
product of two of its divisors of the same parit� m-n = dl d2 corresponds
to exactl� one number l E H,,Hm , namel� to i = n - j2 = m - h2 with
h = (d L+d2)/2, j = (d l -d2)/2, and thus our assertion is proved .

Now let Anm denote the event that �1=0 for all lEHnm. Then we have

�

	

�

	

c
(3.5) P(Anm) = 1 1 (1 -- Pá =

	

1 1

	

11- '�
IeHMn

	

h=(dl+d2)I2.d,d2=m-n

	

V m-h2

We distinguish two cases . Let E denote the class of integers N for which

N is contained in an interval s 2-Y s, 8 2+VS (s = 2, 3, . . .) . If N is not
in E, we have b� (3.5)

(3.6)

	

P(Anm) - 1-0 l� - = 1-0	1 )
m'I13

(	

Vm

)d(m-n)

if m > mo , in view of d (N) = O (N) for ever� e > 0 (see (15], p . 260) .
Evidentl� under the condition A,,. the random variables e, (n) and

er (m) are independent ; thus if m is not in E, we have

and

It follows that
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1
M(E,.(m) Anm) = M(Er(m))+0 m1113

M(Er(n)IA.) = M(Er(n))+0
1

m

M(Er(m)Er(n)) = M(Er(m)Er(n)IAnm)+0(
1

M
l/13

M(e,.(m))M(e,.(n))+ 0
( ml/13 ),

N N

(3.7)

		

(M(er(m)Er(n))-M(er(m))M(Er(n))�
n=1 m=1

= 0 (N2-1 / 13 ) + 0 (N 1 1) .
m -P,m-<N
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Since

(3.8)

it follows that

(3.14)

N N1

	

[M(er(n)er(m))-�(er(n)1�(�r(m))J = o(N 25113 ) .
n=1 m=1

Thus putting

(3 .10)

we have

P. Erdős and A. Rén�i

1 1 = o(N51b ),
meE,m<N

N

�r(N) = N �er(n)
n=1

M��,(N)) =
Ar'

+0(�N )(3 .11)

and

(3.12)

	

D2 (Cr(N)) = 0
1

(N1113 � .

B� the inequalit� of Cheb�shev we obtain for an�
r x

(3.13)

	

P (

	

Ar!

	

>s
) = 0(N113) ./

1

Thus the series

A' 8 a
�.(Nl4)-	r t

is convergent .
Since this holds for an� e > 0, it follows b� the Borel-Cantelli lemma

that with probabilit� 1
Are-�

(3.15)

	

lim �r (N14) _		(r = 0, 1, . . .) .
N,+oo

	

r
Since

lim
(	
N

N+1)14

N,+oo
= 1,

> e)

e>0

it follows, as in the proof of Theorem 2, that with probabilit� 1

(3.16)

	

lira C,(N) =
Are-x

	

(r = 0, 1, . . .),
N,+oo

	

r !

which proves Theorem 3.



§ 4. Sum of two terms of the same random sequence . In this sec-
tion we prove

THEOREM 4. Let vk be a random sequence of positive integers gener-
ated b� the sequence o f probabilities pn such that pn is decreasing and tends
to 0 ; further, let

(4.1)

	

lim f pkpn-k =
n� +°Ok<n/2

and for some S with 0 < S < 1
n

(4.2)

	

1 pk = 0(n1-d ) .
k=1

Let f (n) denote the number of representations of n in the form n = vk+vt
with vk < vi , and denote b� Sr the sequence o f those integers n for which
f (n) = r. Then $,, has with probabilit� 1 the densit� ;re-"/r! for r = 0, 1, . . .
Especiall� the set o f those integers n which have at least one representation
in the form n = vk+ v i with k < l has the densit� 1- a -x .

The proof of Theorem 4 follows exactl� the same pattern as that
of Theorem 2 and thus ma� be left to the reader . Clearl� if pn = a/fin
with a > 0 then the conditions of Theorem 4 are fulfilled with A = 7ra 2 /2
and S = , since

1/2

	

dx

	

-
a2 7r

pkpn-kf

	

= a2f	 +0

	

+0 -
k<n/2

	

0 l/x(1-X)

	

n

	

2

	

n

further

I pk = 0 (fin) .
k<ni2

Let us mention that if we define f* (n) as the number of all represen-
tations of n in the form n = vk+vl without the restriction vk < v i , then
clearl� f * (n) = 2 f (n) if n is odd and f * (n) = 2 f (n) + �n12 if n is even.

Clearl� the sequence of those even numbers 2k for which lk = 1 has
the densit� 0, as a matter of fact, if Nr/N denotes the number of such
integers 2k < 2N, we have

and thus
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N
1

nN = N Y �k
k=1

1
M(nN) = 0 _+
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This implies

therefore with probabilit�

and thus also

(5 .1)

and

(5.2)

we shall have

P. Erdős and A. Rén�i

m(n,) < +-,"�

1

lim 17N4 = 0 ,
N- +oo

hm q,,, = 0 .

Thus it follows from Theorem 4 that if Sr denotes the sequence of those
integers n for which f * (n) = r, then S2T has with probabilit� 1 the densit�
Ar e-"Jr! while 52,+, has the densit� 0 (r = 0, 1, . . .) .

§ 5. On random sequences for which f (n) --� +oo. Let us choose
a sequence {pj of probabilities so that putting

A,(n) _ 1, pkpn-k
k<n/2

-A .(n) _

	

pk
2 2
pn-k

k<n/2

(5.3)

	

lim (AI(n)-Á2(n» _ +�*
n-->+00

Let vk denote the random sequence of integers generated b� the
sequence pn in the sense of § 1 . In that case the number of representations
of n in the form n = vk+vl with k < l is in the limit for n-*+oo normall�
distributed. This is expressed b� the following

THEOREM 5 . Let (pj be a sequence of probabilities such that if A I (n)
and A 2 (n) are defined b� (5.1) and (5.2) respectivel�, then we have (5 .3) .
Then, denoting b� f (n) the number o f representations o f n in the form n = v k+ vi
with k < l, we have for - oo < x < + oo

(5.4)

	

lim P'f(n)-AI(n) < x) _ 0(x),
n-�+� 1�A1(n) -A 2 (n)

where O (x) denotes the standard form o f the normal distribution function,
i. e.

x

(5.5)

	

�(x) =
127

f
e-n212 du .



Proof . f(n) _ f �k�n-kf where the random variables �k are inde-
k<n/2

pendent and P( k = 1) = pk , P(�k = 0) = 1-p k (k = 1, 2, . . .) . It
follows that

M(f(n)) = A,(n) and D2 (f(n)) = A1(n)-A2(n) .

Since the conditions of the central limit theorem of probabilit� theor�
(e. g. Lindeberg's conditions, see [8]) are fulfilled, (5.4) follows imme-
diatel� .

The conditions of Theorem 5 are clearl� fulfilled, e . g . if pn = w (n) [Vn
where w (n) ->- + oo and w (n) [Vn < q < 1 .

A similar result holds for the number of representations of n in the
form n = k2+,U1 where 1,411 is a random sequence of integers generated
b� a sequence of probabilities qn such that putting A, (n) _ Z gn_k2 and

k2<n
A 2 (n) _ gn_ k2 we have A 1 (n) -A 2 (n) + oo ; thus for instance if &

k2<n
= w (n) /Vn with w (n) + oo and w(n) /inn < q < 1 . In this case if we
denote b� f (n) the number of representations of the number n in the form
n = k2+ V1, (5 .4) is valid .

§ 6. Sum of more than two terms of a random sequence . The
results obtained in the preceding sections can be generali�ed to sums of
more than two terms . As an example we prove the following
THEOREM 6. Let vk be a random sequence of integers generated b� the
sequence of probabilities pn = cinl-1 la where s > 3 is a positive integer and
c > 0. Let f (n) denote the number o f representations o f the number n in the
form n = vkl + vk2 + . . . + vks with k, < k a < . . . < k, . Let S, denote the se-
quence of those integers n for which f (n) =r. Then S, has with probabilit� 1

the densit� A e -x/r! where A = er(lis) . (r = 0, 1, . . .) .
s .

Proof. Let us put e,(n) = 1 if f (n) = r and = 0 otherwise. Now
we have

hm

	

pk1 pk2 . . . Pk,,
k1<k2< . . .<ks
kl+k2+ . . .+ks=n

c8

	

/r /r

	

'r

	

dx,

	

dx 2

	

dx8- 2

	

dx8_ 1

8'

	

J J
. .

. J

	

x1-1,/s • x1-1/3 . . . x1_1/s . x1_1/8(1-x

	

. . . -x _ 1-1/sO-<mi<1(i=1,2, . .,,s-1) 1

	

2

	

s 2

	

s 1

	

1`

	

s 1)
21+x2+ ,,, +%-1< 1

and the integral on the right of (6 .1,) is equal to r(1/s)'. Thus putting

crls 8
(6.2)

	

_	( �l)
s .

	

'

(6.1)
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we have
A*e-�

(6.3)

	

lim M(e,(n)) _		(r = 0, 1, . . .) .
n-_.,+oo

	

r !

The estimation of M (e,. (n) e,(m)) can be obtained as before, and Theorem 6
is proved in the same wa� as Theorems 2 - 4 .

§ Z. Differences formed from a random sequence. Let {vk ) be a ran-
dom sequence generated b� the sequence of probabilities {pn ) . Let g(n)
denote the number of representations of n in the form n = vk - vl . Clearl�

n

(7 .1)

	

M(g(n)) _ f PkPn+k •
k=1

Two cases are possible : either M(g(n)) is infinite, which is of minor
interest, or it is finite for ever� n. The latter is the case if for instance
co
1pk < -I «>. In that case, however, we have lim M(g(n)) = 0. Renee it

+oo
is clear that here we cannot hope to obtain similar results to those
we obtained for the sums vk+vl . More reasonable results can be
obtained if we consider onl� representations n = vk-vl for which
vk < (1+B)n where B is a positive constant not depending on n If gB (n)
denotes the number of such representations of n, we have, putting

pk = c/Y k (c > 0),
B

(7 .2)

	

lim M(gB (n)) = C2 f	
dx

	

= C21og(B+1-{ VB 2 +2B) .
n�+�

	

1/x (1-+- x)0

It can be shown b� the same method as that used in proving Theorem 2
that the following theorem holds :
THEOREM 7. Let the random sequence vk be generated b� the sequence
o f probabilities pn = e [Vn (e > 0) ; let gB(n) denote the number o f represen-
tations o f n o f the form n = vk - vt where vk < (1 +B) n (B > 0) ; then the
sequence of those integers n for which gB(n) = r has the densit� Are-�/r!,
where R = C21og(B+1+VB2+2B) . Especiall� for B = (e-1) 2/2e we have
= C 2 .

§ 8. On random sequences for which f (n) is bounded . S. Sidon
([7], [12]) considered such sequences {ak ) of positive integers that the

sequence of coefficients of the series (,Zxak) E is bounded. He called such se-
k=1

quences BI -sequences (l = 2, 3, . . .) . We shall call a sequence {ak) a BI (K)
00

sequence if the coefficients of (j xak)Z are all < K. The interesting ques-
k=1



Additive properties o f random sequences o f positive integers

	

97

tion is how dense a BI (K) sequence can be. It has been shown b� Erdös
[3] that there exists a B 2 (1) sequence {ak ) such that ak < ck3 , while
Erdös and Turán [11] (for a detailed proof see [13]) have proved that
for ever� B 2 (1) sequence one has limsupak/k2

k-).+oo
We shall prove in this section that if (vk ) is a random sequence gen-

erated b� the sequence of probabilities pn = c/nI / 2 +e (c > 0, s > 0)
then with probabilit� I vk is a B2 sequence .

Thus we shall prove the following

THEOREM 8 . Let vk be a random sequence o f positive integers gener-
ated b� the sequence of probabilities pn = c/nI/ 2+e where c > 0 and 0 < s < 1.
Let f (n) denote the number o f representations o f n in the form n = vk + v=
with k < l ; then with probabilit� 1 f (n) is bounded ; moreover with probabi-
lit� 1 /(n) < [1/2e] except perhaps for a finite number o f values o f n .

Proof. Let sin have the same meaning as in § 1. Then f (n) _ f k n_k
k<n/2

and thus, taking into account that

I/2

	

dx

	

1
l

	

nee

	

pkpn-k) = c2 f [x(1-x)]I/2+B - 2 c2 I(e),
n_+00

	

k<n/2

	

0

we have

e��(n))
-

	

+

	

(e'-1)e2

	

<

	

c2(et-)I(.s)
(8 .1)

		

1V1(e��(n))
(1(k(n-k))I/2+e � exp	

n28
k_<n/2

for n > no where

I(E) = B(�-E, �-E) =
r(�-E) 2

r(1-2e)'

Here and in what follows B(a, fl) denotes the beta-function of Euler

(8.2) B(a, fl) = If xa-I (1-x)P-Idx = r(r(aa)	
+#)
r(fl)

for a > 0, # > 0.
0

We infer, choosing t = log (1 + n2 e), that

ec,21 (s)

(8.3)

	

P(f (n) > K+1) < n2e(á+t)

Thus if K+j > 1/2E the series
00

(8.4)

	

jP(f(n) > K+1)
n=I

Acta Arithmetica VI.
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is convergent . It follows from the Lemma of Borel-Cantelli that with
probabilit� I f (n) < H except for a finite number of values of n ; we ma�
choose 8 = [I/2e] . Thus Theorem 8 is proved .

Note that from (1.6) we have vk , (k/e)2/(1-2a) . Thus for an� b > 0 there
exist sequences {ak ) such that ak = 0(k2+d) and the number f(n) of repre-
sentations of n in the form n = of +ak is bounded. As a matter of fact,
if we choose pk = I/(k l f2+e ) with e = S/(4+25), almost all reali�ations of
the corresponding random sequence {vk) ma� be taken for {ak ) . Of course
(as is usual if a number-theoretical statement of existence is proved b�
probabilistic methods) our methods do not give an effective construc-
tion.

B� the same method one can prove the existence of BI-sequences
{ak ) such that ak = 0(kl+d ) for an� S > 0 (l = 3, 4, . . .) .

§ 9. A theorem of the „iterated logarithm" t�pe .
THEOREM 9. If the random sequence {vk) is generated b� the sequence

o f probabilities pn = c /fin (c > 0) and f (n) denotes the number o f solutions
of n = vk+vi (k < l), we have with probabilit� I

f (n) loglogn
(9.1)

	

limsup

	

= I .
"- +oo

	

log n

Proof. First we prove that with probabilit� 1

f (n)loglogn
(9.2)

	

lim sup	
to

	

<
In- +oo

	

g n

Clearl� for an� e > 0 if n > no and B =' (I+2e)
loge

log log n

(

	

e2/�k(n-k))
k<n2

P (f (n) > B) < I pk l pn-k l . . . pkR pn-kR <

	

B 1

and thus

(9.3)

(9.4)

P(f(n)
>

(1+2e)
loglogn) = 0(nl`) .

9

It follows that the series IP(f(n) > (1+2E)
logn

	

is conver-
loglog n

gent for an� e > 0, and thus b� the Borel-Cantelli Lemma it follows that
(9.2) holds .

Now we prove that with probabilit� I

lim sup
f (n)loglogn

>to

	

In-.+oo

	

gn
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To prove (9.4) we need a lower estimate for PQ(n) > R) ; we have b�

(2.7) for R = C(1-2E)
loge

+1 and n > n 0 (E)
loglogn

1
(9.5)

	

PQ(n) > R) >	ni_ e ,

which implies that the series I P (f(n) > (1- 2E)
log n

) is diver-
gent.

	

loglogn

Now let A„ denote the event f (n) > (1-2E)
logn

; the events
log log n

A„ (while not independent) are almost pairwise independent in the follow-
ing sense :

N N1 1 P(A.A.)(9.6)

	

lim n- m-	= 1 .

and in view of

N-->+M
(IP(-4.»,nel

As we have shown in a previous paper [16], this is sufficient for the val-
idit� of the Borel-Cantelli lemma and thus (9.6) and (9 .5) impl� (9.4) .
That (9.6) holds can be shown b� the same method as that applied in
the proof of Theorem 2 in estimating M�E,(n)E, (m))-M�Er(n))M�E,(m)) .

§ 10. The law of large numbers for f (n) . In this section we prove
THEOREM 10. If the random sequence { vk) is generated b� the sequence
of probabilities pn = c/1/n (c > 0) and t (n) denotes the number of solutions
of n = vk + vi with k < l then with probabilit� 1

N

(10.1)

	

lim 1 ft(n) _
N,+. N n_l

where A = can /2 .
Proof. Putting

N

CN = Njt(n)
n=I

N
111> k = 21�+0(1),
k=1

we evidentl� have
i

1-x

	

1,
M(CN) = c2

	

x
dx+0(ff�

	

�J .0
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where B(a, fl)

(10.2)

and therefore for an� s > 0

(10.6)

Since

is Euler's beta

P . Erdős and A. Rén�i

�7 /1-x

	

! 1 3 - rr
dx
= B'(2 , 2 )

	

2 ,o

	

i
function (see (8 .3)), it follows that

2
M ( �N) = 2 I- OU-1

On the other hand, we obtain b� some eas� calculations

3
(10.3)

	

D2(�N) = 3VN +0(N) .

Thus b� the inequalit� of Cheb�shev

POCN-2I > E) = 0 ( 1/

1

1v

It follows that the series
M

j, P(1CN3 - A1 > E)
N=1

is convergent for ever� s > 0 ; b� the Lemma of Borel-Cantelli this implies
that with probabilit� 1

(1,0.4) lim ár,3 = A .
N-*+oo

On the other hand, we have for A < B < 3A/2
B

M ( I f (n)) , (B-A) R
n=d+1

and

(10 .5)

Thus we have

B
0

((B -A)2) .
D2 (

	

f (n)) =
n=�+1

> EN3

	

1
) = 0 N312)p (N3<M<(N+1)3 N

3 +1

M

Max

	

I /(n)

M

	

M

PN=1 (N3<Mg(N+1)3 N3+1
Mag

	

�� f (n) I > s) < oo .
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(10.4) and (10.6) impl� that with probabilit� 1

(10.7)

	

hm �N = A .
N-s+oo

Thus our Theorem is proved .
N

To obtain the limiting distribution of ( Zf (n)-AN)JN 3/4 the higher
n=i

moments have to be calculated . We do not investigate this question
here .

§ It. Stochastic analogous of Romanoff's theorem . N. P. Romanoff
proves [5] that if p denotes primes and a > 1 an integer, then the set of
integers n which can be represented in the form n = ak+p (k =1, 2, . . .)
has positive densit� . Erdős [14] has shown that if Q(x) is a pol�nomial,
then the sequence of numbers n which can be written in the form
n = Q(e)+p also has positive densit�. In this section we shall consider
stochastic analogous of these theorems . First we replace the sequence of
primes b� a random sequence l �l) generated b� the sequence of proba-
bilities qn = bAog(n+l) (b > 0), in which case b� (1.6) we have with
probabilit� 1 µ l bllogl, i . e. for b = 1 the sequence p, has the same order
of magnitude as the l-th prime number .

We prove the following
THEOR EM 11 . Let the random sequence j � j ) be generated b� the sequence
of probabilities qn = b jog(n+l,) . -If f (n) denotes the number of representa-
tions of n in the form n = ak+µl , where al < a2 < . . . < ak < . . . is a given

k -
sequence of integers such that lim {�ak = e ll" exists, and 0 < a < + oo,

"+oo
and S, is the sequence o f those numbers n for which f (n) = r (r = 0, 1, . . ,),
then S, has with probabilit� 1 the densit� (ab)" 6-`b/r! .

Proof. The proof of Theorem 11 is analogous to that of Theorem 2 .
Putting s,(n) = 1 or 0 according to whether f (n) = r or f (n) 0 r, and
taking into account that if n' is defined b� an , < n < 4,,, + 1 then b� suppo-
sition n'/loge a, we obtain

It follows that

n'

log(n bak+') = ab+ log (nan,+1) +0(1) .

lim -

	

M(e,(n)) _	 (r = 0, 1, . . .) .
N�+oo N

		

r !n-1

N

	

(ab)re-ab

Taking into account that the number of quadruples (n, m, ak , al) with
n < m < N and ak < aL < N such that n - ak =m-al is evidentl� of



1 02

order N1og 2N, we obtain

N

D2 (Nl s.(n)) _
(loNN

61

and the proof can be completed as that of Theorem 3 .
Another possible stochastic analogon of Romanoff's theorem could

be obtained b� considering the sums n = vk+p where vk is a random
sequence generated b� the probabilities p» = e(n (c > 0) (which implies

k-
according to (I.7) lim lwk = e1/°) and p is a prime. In that case, denoting

k-,+oo
b� f(n) the number of representations of n in the form n = vk+ p, we
have

where the summation is extended over all primes p < n ; this sum is ver�
sensitive to the irregularities of the distribution of primes and thus this
problem requires careful separate consideration . If, however, we replace
the sequence of primes b� a sequence Ipj of similar growth but more
regular behaviour, then these difficulties disappear .

We consider the case where both sequences are random in the follow-
ing section .

§ !2. The sum of a dense and a rare sequence . In this section we
shall prove a general theorem, which is of the same t�pe as Theorem 2
and which covers some cases in which condition (2 .5) is not satisfied .
This theorem runs as follows .
THEOREM 12. Let (vk} and {,a=} be independent random sequences of
integers, generated b� the sequence of probabilities (pn } and (qj, where the
sequence q» is decreasing. Let us put

(12.1)

	

P(n) _

	

pk and Q(n) _ 9qk
k=1

	

k-1

and suppose that P(n)

	

-boo, Q(n) -> +oo for n +oo and that for
an� p > 0 we have

(7,2.2)

	

lim Q(np)
= P .

n +,, Q (n)

Further, let us put

P. Erdös and A. Rén�i

M(f(n» _

n

	

n

n-1
(12.3)

	

rn = 1 pkgn-k
k-1
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and
n

(12.4)

	

R(n) _ frk .
k=1

Suppose that

(]2.5)

	

lim
R(n)

= A > 0 .
W. +00 n

Let /(n) denote the number of solutions of n = vk -}-,at ; then the sequence S,
of numbers n for which f (n) = r has with probabilit� 1 the densit� Ce_ ajr!
(r = 0, 1, 2, . . .) .

Remark. Clearl� it follows from (12 .2) that condition (2.5) is not
fulfilled. Thus Theorem 12 can be applied in cases where Theorem 2 is
not applicable .

Proof of Theorem 12. For the proof we shall need some results
of a Tauberian kind .

LEMMA 1. Let dk be a sequence o f positive numbers, a > 0 . Put

(12.6)

	

D(�) _ f dkkw

and
ao

(12.7)

	

d(x) = G dkxk .
k=1

If the series (12.7) is convergent for jxj < 1 and for ever� p > 0 we have

d(xv)

	

1
(12.8)

	

limo	
d(x) = p° ,

then we have

(12.9)

	

lim	d(x)
xal-o D(lflogx-1 )

and thus

(12.10)

	

D(p�)lim	 = p .
D(�)

Conversel� if (12 .10) holds then (12 .7) is convergent for IxI < 1 and (]2.9)
and thus (12.8) is valid. In other words, (12.8) and (12.10) are equivalent .

Remark. The first assertion of Lemma 1 is due to J. Karamata
[17], the second to N . G. de Bruijn and P. Erdős [18] .
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LEMMA 2 . Let (pk} and (qk} be two sequences of positive numbers .,
and put

n-1
rk =

	

pkbn_k
ik=1

n

	

n

	

n
P(n) _ jPkl Q(n) _ 1, qk, R(n) _ jrk.

k-1

	

k=1

	

k=1

Suppose that for ever� p > 0 we have

(12.13)

	

lim Q(p�) = p° and lim
R(p�.)

= p�
V'+- Q(�)

	

v->+� R(�)
where 0 < a < � . Then we have

(12.14)

	

lim
P(n)Q(n) _

	

F(1-{-�)

n-r+00 -R(n)

	

r(i+a)I'(I+�-a)

Remark. Lemma 2 is due to N. G. de Bruijn and P . Erdős [18] .
Now we are in a position to prove Theorem 12 . Let us put

00

	

00

(12.15) p(x) _ f, pkxk ,

	

q(x) _

	

gkxk

	

and

	

r(x) _ �rk xk .
k=1

	

k-i

	

k=1

Appl�ing Lemma 1 (with a = 1) we obtain with respect to (12 .2) and (12.5)

(12.16)

	

lim q(xp) _

	

and lim
r(xp) - 1

W'I-o q(x)

	

p

	

x,,-o r(x)

	

p

Since b� (12.3) we clearl� have

(12.17)

	

p(x)q(x) = r(X)7
it follows that

(12.18)

	

lim p(xp )-	 = 1 .
2-a1-0 P (x)

Appl�ing again Lemma 1 (with a = 0) we obtain

(12 .1.9)

	

lim
P(pn)

= 1 for an� p > 0 .
.,+. P(n)

Thus we can appl� Lemma 2 with � = 1 and a = 0 and obtain

(12.20)

	

lim
P(n)Q(n) -

nn- +oo



Denoting b� E (N) the number of values of k for which vk < N we have,
b� (1.5), with probabilit� 1

(12.21)

	

lim E(N) = 1 .
N- +m P(N)

Let {ak } be a fixed reali�ation of the sequence {vk } for which (12 .21) holds .
Put

(12.22)

and

(12 .23)

Then we evidentl� have

(12.24)

	

T(N) _ I Q(N-ak) .
ak<N

On the other hand, if en = 1, if n = ak and en = 0 if
we have

and

(12 .27)

(12.30)
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tn = 1 gn_ak
ak<n

N
T (N)

n=1

n-1
(12.25)

	

to = I qn-kek-
k=1

Let us put
00

(12 .26)

	

e(x) =1 ek xk
k=1

t(x) _ ltkxkk
k=1

lim
t (xp)

=
1
-

�--A-0 t (x)

	

p

ak<n<ak+1f

B� virtue of (12 .21) and (12 .19) we ma� appl� Lemma 1 with a = 0
for the sequence ek ; we obtain

(12.28)

	

lim
e(xP) = 1

.
x'1-o e(x)

Since b� (12.27) we have

(12.29)

	

t(x) = q(x)e(x),

it follows from (12 .28) and the first relation of (12 .16) that
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Appl�ing again (in the opposite direction) Lemma 1 with a = 1 for the
sequence t,,, we find that for p > 0

T(pN)
(12.31)

Appl�ing again Lemma 2, b� (12.31) we have

(12.32) lim E(n)Q(n) = 1

and thus with respect to (12 .21) we obtain

-P(n)Q( )
T (n)

(12.33)

and finall� with respect to (12 .20)

(12.34)

	

hm T (n)
_ A

+� ,+ao n

Now, since

(12 .35)

and thus

(12 .36)

qn is decreasing, we clearl� have

Q(2n) - Q(n) _ I qk < ngti
n<k<2n

liminfnqn > im Q(2n)-Q(n) = 1 .
lQ()n�nn-i+oo Q (n)

lim	 - =
T(N)

	

p .
N,+ao

lim
n- +o0

On the other hand, we have b� (12.25)

(12.37) to > q.E(n)

and thus b� (12.20), (12.21) and (12.36)

(12.38)

	

liminf to > A .
n-a+oo

Thus the sequence tn , which according to (12 .34) is (C, 1)-summable
to the limit A, is such that its inferior limit is not less than A . This clearl�
implies
(12.39)

	

liminf to = A .
n +oo

Now we need the following (well-known)
LEMMA 3. I f a sequence t„ is (C, 1)-summable to the limit A and liminf t„

n- +o0

= A, then for an� bounded function g(x) which is continuous for x = A the
sequence g(tn ) is (C, 1)-summable to the limit g(A) .
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Proof . The proof of Lemma 3 is ver� simple ; as a matter of fact,
our suppositions impl� that for an� e > 0 the sequence of those values
of n for which in > A+ e has the densit� 0, whence - in view of the sup-
positions concerning g(x) the assertion of Lemma 3 immediatel�
follows .

We can appl� Lemma 3 to our sequence to in view of (12 .34) and
(12.39) and for the continuous and bounded functions gr (x) = xre-x/r!
(r = 0, 1, . . . ), and find that

n r tk
(12.40)

	

lim
1"tk e

	

=Are-'

	

(r=0,1, . . .) .
n-+oo n k-i r!

	

r!

Let us now define the random variables er (n) as follows : er(n) = 1 if
n has exactl� r representations of the form n = ak + �� ; otherwise we put
er (n) = 0 . It follows that

(12.41) M (er (n)) _

	

I qn-atl qn-ai2 . . . gn_air

	

J 1

	

(

	

n-ak)
il<i2< . . .<ir

	

ak<n
k#il .i2 ir

Thus we find b� (X2.40) that
N

(12.42)

	

lim 1
1

M(er(n)) =
Are-A

	

(r = 0, 1, . . .) .
N�+oo N

	

r !

Let us now consider the random variable

N
(12.43)

	

C, (N) = YN

	

er (n) .

It follows b� (12 .42) that

n-1

r x
(12.44)

	

limM(C,(N)) =
AT'

	

(r = 0, 1, . . . ) .N

Let us now consider the variance of C,(N) .
We evidentl� have

N N
(12.45) D2 (Cr(N)) = N2 (��]M(er(n)er(m))-M(&*(7L))M(er(m))])

n=1 �n-1

Clearl� er (n), er(m) are independent if n-m cannot be represented
in the form n - m = akl - akt because in that case n - akl and m - akt
cannot be equal and thus a pair of representations n = akl + ,ul and
m = ak2+/0ü with the same � j is impossible . For a fixed pair (k l, k 2 ) the
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number of pairs (n, m) for which n < N, m < N and n - m = akl - akt
cannot exceed N, and the number of pairs (k,, k t ) with akl < N, akt < N
does not exceed CP2 (N) where e > 0. In view of

IX(Er(n)8r(m))-M(er(n))X(e,(m))I <1

it follows that

(12.46)

	

D 2 (gr(N)) = 0 (P2(N)
	 ) .

N

Clearl� for an� e > 0 we have b� (12.19)

(12.47)

	

P((n))
< 1+8 for n > no (e) .

This implies that for an� 6 > 0

(12.48)

	

P(N) = 0(Nó ) .

Thus we obtain from (12.46) and (12.48)

(12.49)

	

D 2 (C,.(N)) = 0( N1_ó) for an� 6 > 0 .

Now, exactl� as in proving Theorem 2, we conclude that with proba-
bilit� 1 we have

Are`
(12.50)

	

lim �,.(N) _	
N,+oo

	

r !

Thus the sequence S,. of those integers which have exactl� r repre-
sentations of the form n = ak+,at where {ak ) is a fixed reali�ation of
the random sequence 11'0 9 for which (12 .21) holds, has with probabilit� 1
the densit� Ar e- " Jr! .

Since almost ever� reali�ation 1010 of the random sequence {vk )
satisfies (12.21), it follows that the sequence Sr of those integers n which
have exactl� r representations of the form n = vk +l� l has with proba-
bilit� 1 the densit� Are-1/r!.

To show that this last - intuitivel� clear - step is reall� admissible,
let us consider the following reali�ation of the probabilistic set-up . Let
the probabilit� space be the unit square of the (x, �) plane, and let the
probabilit� measure P be the ordinar� Lebesgue plane measure. A ran-
dom variable is then nothing else than a measurable function C(x, �)
of the two variables x and � (0 < x < 1, 0 < � < 1). Let us construct
the random variables �„ so that the� depend onl� on x, i . e . �,ti (x, �) _
�„(x) and the random variables qn so that the� depend onl� on �, i. e .
,q,,(x, �) _ 77„(�) ; suppose that the �,,(x) are independent (with respect
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to the Lebesgue measure in the interval 0 < x < 1) and, further, that
the %(�) are also independent (with respect to the Lebesgue measure
in the interval 0 < � < 1)) ; suppose that the� have the prescribed distri-
butions, i . e. $. (x) = 1 on a set of measure p,, and 0 elsewhere and, further,
,%(�) = 1 on a set of measure q„ and 0 elsewhere. Then for each point
(x, �) of the square 0 < x < 1, 0 < � < 1 the sequences vk and µt are
well-defined (numerical) sequences of positive integers and thus the se-
quence S,. = Sr(x, �) is also uniquel� defined for all points (x, �) . Now
let E,, denote the set of those points (x, �) for which the sequence S,, has
the densit� Are-1/r! and let Ér be the complementar� set. According to
Theorem 11 the intersection of Rr with the line x = x e (0 < xo < 1) has
for almost all x o the (linear) measure 0 ; thus b� Fubini's theorem Er has
itself the plane measure 0, which was to be proved .

Thus Theorem 12 is proved .

Remark. If p9, = a/n (a > 0) and q,, = b/log(n-}-1) (b > 0), then
all conditions of Theorem 12 are satisfied (with A = ab) and thus the
conclusion of Theorem 12 is valid. Note that in that case, according to

k -
(1.7), we have with probabilit� 1 lim l vk = e"°, and denoting b� H(N)

k,+ao
the number of terms of the sequence µi not exceeding N we have b� (1.5)
with probabilit� 1 H(N) , bN/logN. Thus this special case of Theorem 12
furnishes another stochastic analogon of Romanoff's theorem .

It would be possible to prove a more general theorem, which in-
cludes both Theorem 2 and Theorem 12, but to obtain the most general
theorem One has to solve some difficulties of Tauberian t�pe .
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