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N:. J. Kanold and I (see [I] and [4]) observed that if a and b, where
a,* b, are squarefree integers then a(a)1a; a(b)/b . The proof is very
simple. Assume a(a)/a = a(b)/b ; we can clearly assume (a, b) = 1 . Let
p be the greatest prime factor of ab, say pla, p*b . But then aa(b)=ba(a)
is clearly impossible, since the left side is a multiple of p and the right
side is not .

On the other hand the equation

(1)

(2)
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clearly has infinitely many solutions, e . g. if (u, 42) = 1,
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A solution of (1) is called primitive if
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but for every d1a, d1b,
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in other words a and b are called primitive solutions of (1) if no prime p
divides a and b to the same exponent . Clearly every solution al , b t of (1)
can be written in the form at = au,, b t = bu where a and b are primitive
solutions and (u, ab) = 1 .

It is very probable that if {at , bj, 1a27 b2 } are primitive solutions
then az = kat , b2 = kb, is impossible .
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It seems very likely that (1) has infinitely many primitive solutions,
but I cannot prove this . Perhaps even the equation

a (a)

	

a (b)
( 3 )

	

a	 b

	

(a, b) - l. ,

has infinitely many solutions . (3) clearly implies that a(a) 0(moda),
a (b) 0(mod b), i . e. that a and b are multiply perfect . In fact, no solu-
tion of (3) is known, since no odd multiply perfect number is known .

In the present paper I shall prove that the number o f distinct numbers
of the form

a(n) ,

	

1 < m, ~ x,
n

equals e,x+o(x) where 6/72 < c, < 1 .
Further I shall outline the proof of the following result
The number of solutions of (1) satisfying a < b < x equals e 2x+o(x)

for some constant 0 < e 2 < cc.
The analogous questions for (p(n) are all trivial, since it is easy to see

that g)(a)/a = (p(b)lb holds if and only if a and b have the same prime
factors. To see this observe that if a and b are both composed of the
primes pl, p2, . . . , pk then

k
9?(a)

	

9'(b) _ ~

	

1
1-- .

a

	

b

	

p;

If a and b do not have the same prime factors we can write a - a i ddi ,
b = b,dd 2 where (a,, b,) = 1 and not both a, = 1, b, = 1 and all prime
factors of d, and d2 divide d . Then (p(a)ls = cp(b)lb would clearly- imply
fla&a, = q)(b,)lb l , and this is clearly impossible .

I would finally like to call attention to three simple problems which
as far as I know are still unsolved (see [6], p. 193 and 198) .

Is it true that the equation u(n) = q9(m) has infinitely many solu-
tions'? The answer certainly must be yes .

Let 1 < c < oo. Does there exist an infinite sequence of integers
nk , -mk , where Ilk

	

Ink, for which a(nk ) = I( 'Ink) and mk /nk -~ c ? It
is not difficult to see that for c = 1 the answer is positive, but I cannot
decide the general question, in particular c = cc is open. The analogous
question for the function (p can easily be answered affirmatively .

Is it true that the number g (x) of solutions of

(1)

	

a(a) _- a(b),

	

(a, b ) = 1

satisfies g(x)lx -~ oc ?
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THEOREM 1. The number of distinct numbers of the form

a(n)
re

A, b - 1 1 p , Bu -
pIn.p21 n

1 <n 'íx

equals cl x+o(x) (compare [5]) .
Write n = A,,Bn where A,ti is the squarefree part and Bn the quadratic

part of n, i . e .

n ,

	

(An, Bn) -- 1
An

Now we prove the following
LEMMA. Let v, and v 2 be two integers whose all prime factors occur

with an exponent greater than 1, (i . e. whose squarefree part is 1). Then there
exists at most one pair of squarefree integers u, and u 2 satisfying

	Q( 2G 1v 1)

	

a(n2V2)
(5)

	

u,v,

	

n2I~2
,

	

( u19 V1) = (n2, V2) = ( u1, u2) - ~- .

Suppose that there is a second pair uí, u2 satisfying (5) . Then we
should have

(6) 6 (u1) n2

	

a(uí) u2

	

r
u

	

a(u2)

	

uí a(u2)

	

s , ('al, u2) _ (uí, u2) _ ( r, s) = 1 .
1

Now we show that (6) has no solutions (except if u1 = uí, u2 = u 2 or
u l = u2, u 2 = uí), and this contradiction will complete the proof of the
Lemma. Assume that u„ u27 uí, u2 is a solution of (6) for which the pro-
duct u,u2uíu2 is minimal (it clearly must be greater than 1 since not all
the u's can be 1) . Let p > 1 be the greatest prime factor of u 1 u2 u l U2 ;
assume say p l u lf p* u2 . Clearly pas (since a(u,) / 0(modp) as u, is
squarefree) . But then by (6) uí a(u2) ==0 (mod p) or uí -0 (mod p), u2

0(mod p). But then u,/p, u2 , uí/p, u2 also satisfy (6), which contradicts
the minimality of the product u, u2 uí n2

In the same way we can prove that for squarefree integers ui , u;
the equation

-~-- a('ut)

	

3

	

a(ur )

i=1

	

uí

	

j=1

	

uj

r

	

s
is impossible except if H ui _ 11 ú; .

=1

	

f=1
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Now let 1 = v, < v 2 < . . . be the sequence of the integers whose
all prime factors occur with an exponent greater than 1 . Clearly

(7)

	

L:1 -~(1+-j+ + . . .) <~,
Z~ii.-1

	

P

and it is easy to see by a simple sieve. process that the density of integers n
whose quadratic part is vi equals

(8)

(0)

( :11)

00

a,,~x 1 -1 (1-1)li( 1
Pivi

	

P~, Vi

1

		

1
2

Pwi

	

P I-Vi

It clearly follows from (7) and (8) that

2 ) = 1 .
Vii=1

	

Pwi

	

P~Ui

Now denote by aril < a2(i) < . . . the integers whose quadratic part
is vi . Clearly

6(49)

	

6(vi) 6(nk)

ak

	

vi

	

ak

Thus the members a(ak" ) )/a( ) are all different . Next we show that
the number of numbers a(ak`))/ak'), v.~ < ak2) < x, which differ from all
the numbers of the form a(ak'))/ah'), 1 < j < i, a ) < x (i . e. which differ
from all the numbers of the form a(n)/n whose quadratic part is less
than vi ) equals

To prove (10) observe that

a(aki))/a(i) = 6(ak'»/ak>>

where Uk is squarefree and (nk , vi) = 1 .

1
'2 +0(x) 1

	

0<ai <1. .

1 <j<i,

holds if and only if there is a primitive solution nti, ni i of (1) so that

(12)

	

ak) = tut, d = tmzi (t, u, w7,) = 1

Clearly the quadratic part of n, and in, must be less than or equal to v.,•, ;
thus by our Lemma there is only a finite number of possible choices
for n z and na, (in fact the number of choices is at most i-1). Thus (11)
does not hold if aki) is not of the form (12) . (10) now follows by a simple
sieve process .



Theorem 1 clearly follows from (7) and (10) .
THEOREM 2 . The number of solutions of the equation

(13)

	

G(a)la = 6(b)lb,

	

a < b C x

equals e 2X+ o (x) .
We will only sketch the proof of Theorem 2 . Denote by Jai , bi}, ai < bi ,

the set of all the primitive solutions of (1) . Sincee every solution of (13)
is a multiple of a primitive solution, Theorem 2 will follow by a simple
sieve process if we succeed in proving that

CO
(14)

	

,
1

bi
< oo .

i =1

Let vk and vl (vk < vi ) be any two integers whose squarefree part
is 1 . From our Lemma it follows that there is at most one primitive
solution of (1) tai, b i , for which B,, . = vk , Bbi = vi .

Thus clearly

Unfortunately Zjlv; = oo, since it is well known that (see [2]) v;

= ej 2 +0(j) . Thus to prove (14) we need somewhat more complicated
arguments, and from now on we will omit most of the details since they
are somewhat cumbersome, but not really difficult and similar to argu-
ments used in previous papers of mine [2] .

To prove the convergence of (14) we first split the pairs (vk , vi )
which give rise to primitive solutions ja i , bi } into two classes . In the first
class are the pairs satisfying vk < vi/(logvi) 4 . For these pairs we have
as in (15)

w
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00

	

CO

:

1

	

j

b2 <
=1 v~i=i

a

v b < ~: f (V,) Iv~

where the accent in the summation indicates that the summation is
extended only over those pairs jai, bi} which correspond to pairs (vk , vi )
of the first class, and I(vi) denotes the number of the v's not exceeding
vl/(logvi ) 4 . From v ; = cj2 d-O(j) we evidently have.

(17)

	

f(vi) < ("31/(logl) 2 .

(16) and (17) clearly implies that "11bí < oc) .
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Henceforth we can restrict ourselves to the pairs (vk, vl) satisfying

(18)

	

VI/(log,gvl)4 < vk < vl .

Now put

(19)

	

ai -= w v,

	

bi = u'v',

	

(u, u') = I

where (v, v) is a pair satisfying (18) . We split the pairs satisfying (18)
again into two classes . In the first class are the pairs for which

(20)

	

max(u, u') > (logv)s .

It easily follows from (1 .i), (18) and (20) that
w

(21)

	

~, bi <

	

r; (log v,) < 00

where ~:" denotes that the summation is extended over the pairs (v, v')
satisfying (20) .

Thus finally we can assume that (20) does not hold . But then if
(vk, VI) give rise to the primitive pair (ai, bi) we must have

6(vk)

	

uk

	

6(ul) 6(yl)
(22)

	

-- .- -- -'

	

,

	

(ai = ukvki bi = 111 "t)vk

	

6(nk)

	

ul

	

vl

Since (20) does not hold, there are at most (logvl)10 choices for

uk

	

or (nl)

or there are at most (logvl)" possible choices for 6(vk)/vk . I can prove
the following

THEOREM 3 . Let 1 < a < oo. Then the number of solutions of a(a)/)t
a, I < n < x is less than c4x12-0s, where ch and cs are independent of a .
We do not give the proof of Theorem 3 since it is similar to one used

in a previous paper [I ] and also uses the remark that for squarefree n
the numbers 6(n)/n are all different . It is very likely that Theorem 3
is very far from being best possible and I would guess that the num-
ber of solutions of 6(n)/n -- a, I < n < x is o(x) . Possibly one can prove
this by using the method of Hornfeck and Wirsing [3] .

From Theorem 3 it follows that the number of solutions of (22) is
less than

(23)

	

("4v1/2-e5 (logvl)io < vl/2-có < c7l' -2c6

for sufficiently large l .



(24)
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From (23) it follows that (as in (1-5))

,,,,

	

°O

	

1-2e6

1 < ~, c77
	 C

b;

	

v;
~=1

00
e $

jI+2c6 < W

i=i

177

where in ',"' the summation is extended over those jai , bi } which give
rise to the pair (vk , vi ), which does not satisfy (20) . (16), (17), (21),
and (24) prove (14) and thus the proof of Theorem 2 is complete .
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