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Introduction

Let {q,, ; be an arbitrary sequence of positive integers subjected only
to the restriction q„ 2 (n = 1, 2, . . .) . Then every real number x (0 x < 1)
can be represented in the form of Cantor's series

	 (x)
-, q,q2 . .]

	

q,~

1

where the n-th "digit" ~„Jx) may have the values 0, l, . . ., q,,-1 . The digits
,F (x) can be obtained successively starting with r„ (x)	x, by the algorithm

(2)

	

~;,, (x) - [q„ r :, , (x)], r„ (x) - ( q, , rr , (x))

where [t] denotes the integral part, and (t) the fractional part of the real
number t .

In some previous papers ([l], [2], [3]) the statistical properties of the
digits F„Jx) valid for almost all x, have been discussed, for the cases when

	1 is divergent and when it is convergent . (See also [4] and [5]) . In the

present paper we consider mainly the case when

	

is convergent.

This case has been considered in [2] from another point of view . The point
of view adopted in the present paper is to consider properties of the infinite
sequence ;F ;, # as a whole ; this point of view has led to the formulation
and solution of a quite surprising number of questions, which have not been
investigated up to now. Most of these questions are interesting only in the

case, when

	

- < =

	

some of them can be raised only under this con-
q

dition .
Our main tool will be a generalization of the Borel-Cantelli lemma,

which is proved in § 1 . Our results on Cantor's series are contained in §§ 2,
3, 4, and 5 .
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§ 1 . Generalization of the Borel-Cantelli lemma

Let [X, 1,, P] be a probability space in the sense of KOLMOGOROV [6],
i . e. X an arbitrary set, whose elements are called "elementary events" and
denoted by x, ff a (Y-algebra of subsets of X, whose elements are denoted
by capital letters (e . g . A, B, etc.), and called events, and P(A) (A ( 61) a
probability measure in X and on d . We shall denote by A+B resp . A B
the union resp . the intersection of the sets A and B, and by A the comple-
mentary set of A . We shall denote random variables (i . e. functions defined
on X and measurable with respect to 6) by greek letters, and denote by
M(~) resp. D =() the mean value resp . variance of the random variable
= (x) . i . e. we put MO- 1 "-(x)dP and

	

If A;,=X
x

(n = 1, 2, . . .), we denote as usual by lim A,, the set consisting of those ele-

ments x of X which belong to infinitely many A,,, and by Jim A„ the set of
l+ CO

those elements x of X which belong to A„ for all n

	

n„(x) .
The events A and B are called independent if P(AB)=P(A)P(B).

A finite or infinite sequence ;A„} of events such that any two events of the
sequence are independent, is called a sequence of pairwise independent
events. If moreover we have P (A,,, A,, :, . . . A,,,.) = P (A,,,) P (A,,.,) . . . P(A„r) for
any r-tuple of different events A;,,, . . . , A,,,,,, chosen from the sequence A, for
all r= 2, 3, . . ., we call the sequence ;A,, ; a sequence of completely inde-
pendent events .

We shall often use the following well-known

LEMMA A. If 7A,,} is an arbitrary sequence of events belonging to a

probability space [X, tl, P] such that ` P(A„) < - a , then with probability

1 only a finite number of the events A„ occur simultaneously, i . e . P(lim A„)~0 .

LEMMA A is nothing else as a special case of Beppo Levi's theorem .
As a matter of fact, if a„ is a random variable which is equal to 1 if A„
occurs and to 0 if A,, does not occur, then the assertion, that only a finite
number of the A,, occur with probability 1 is equivalent with the statement

CO

	

N

that

	

(e„ converges with probability 1 and the condition ~~ P A -) < + x

can be written in the form

	

M((-c„) < -I- x .

The condition '7 P(A, ;) < +

	

of Lemma A is under certain restric-



tions not only sufficient but also necessary for P(lim A„)-0. For example
->+cc

the following result is classical :

LEMMA B . If A,,; is a sequence of completely independent events and

P(A„) - +

	

then with probability 1 infinitely many among the events

A ;, occur simultaneously, i . e. P( lim A,) =1 .

Lemma A and B together are known under the name : the lemma of
Borel-Cantelli ([7], [8]) .

In this § we shall prove the following generalization of Lemma B .

LEMMA C . Let ,A„t be a sequence of events such that G P(A„) = +

and

(1 . 1)

	

lim
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Ji-CO

P (A1, A,)r ;-:1 r=1

~ ~ P (A,` ) Ih: - 1

S P (A, A,)
1 :-11=7

II

	

P (A,.)
k-i

It follows that with probability 1 infinitely many among the events A ;, occur
simultaneously, i . e . P(lim A,,) - 1 .

PROOF of LEMMA C . Let us define cc,, as above, i . e . u,,.= 1 or	0
according to which the event A;, occurs or not. Then we have M(a,) P(A }.)

and M (cc,, cc,) = P (A,, A) and thus putting r,,	~~ cc,, we have
k.--1

M( 12)

M"(r, ;,)

Thus condition (1 . 1) can be written in the equivalent form

(1 .2)

	

lim M("') - 1
M2 ('ji' )

or as M

	

D2 (r,,,)

	

also in the form

D'(1;") _ 0 .(1 .3)

	

lim M, (,') -

Now by the inequality of Chebyshev according to which for any random

95
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(1 .9)

---o3

C

n -1

(1 .8)

	

S

	

P(AF A,) 	P(A,,) +~. P(A,,) (l-P(A,,»
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variable it we have

(1 .4)

	

P(', r, - M(+i)I -- i.D(ii))

	

I

	

if ) > 1,

we have for any E with 0<,, <l
	 D (~i-)(l .5)

	

P(r„ < (1-~)M(~;„))	 _M, ( ~ i )

If (l . 3) holds, we can find a sequence n,: (n, < n., < . . .) such that

M,( ~, , , J )
It follows from (l .5) and (1 .6) that

(1 .7)

	

P(,,,~ = ( l-F) M(rj„~}) < + ~ .
7-1

Using Lemma A it follows that with probability 1 ,,,,, ~_ (l-F)M(,,,,,) except
for a finite number of values of k. As by supposition lim M(,;,,,) _ -{-

	

, it

follows that

	

tends to

	

with probability 1, which implies that
P( I i m A„)= 1, what was to be proved .

REMARK . Clearly the condition (1 . 1) is satisfied if the events A„ are
x

pairwise independent and "" P(A,,)	-}-

	

because in this case

for all n . Thus condition (1 . 1) can be regarded as a condition ensuring that
the events A„ should be in a certain sense pairwise weakly dependent and
Lemma C contains as a particular case the following

COROLLARY 1 . If the events A„ are pairwise independent, and

	

P(A„) -
then with probability 1 infinitely many of the events A„ occur simultaneously .

COROLLARY 2 . If P(Ar A;)

	

P(A;,)P(A,) for k*1 (i . e. if the events
x

A„ are pairwise negatively correlated) and 'V P(A„)=

	

then with pro-

bability 1 infinitely many of the events A„ occur simultaneously .

PROOF OF COROLLARY 2 . If P(A,,A ;) - P(A,:)PA,) for k*l we have

N, N P(A,,Ai) - l " P(A,;)l + .
P(A,,)(I-P(A,,.))

thus condition (1 . 1) is satisfied provided that the series ~P(A„) is divergent .



(2.3)

except when the contrary is explicitly stated .
By (2. 2) and (2 . 3) it follows that for any k=0, 1, . . . we have

7
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§ 2. On the frequency of the digits in Cantor's series
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Let us consider the probability space [X, t~l, P] where X is the interval
[0, 1), t! the family of Lebesgue measurable subsets of X and P(A) the
ordinary Lebesgue measure of A ( J. Thus the Lebesgue measure of a meas-
urable subset A of the interval [0, 1) is interpreted as the probability of a
random point falling into A . With this interpretation the digits ~Fjx) as well
as any other measurable functions f(x) of x will be considered as random
variables. Clearly we have

(2 . 1)

	

P(F„(x) - k)- ql

	

for k=0, 1, . . .,q„-l,

further if n, G n., G . . . G n,. (r	 1,2 . . . . )
1(2.2)

	

P(F,,, (x) = k„ . . . , s,,,, (x) = k, .) _-

if 0-k.; for j 1, . . ., r .
(2.2) expresses the fact, that the random variables ~„Jx) are completely
independent .

Let us suppose from now on that

C

(2.4)

	

"- P (~:„ (x) = k) G -{- .

Moreover it follows from (2 . 3) that for any positive integer N
01

	

V(2.5)

	

~, P(i~„(x)G N)- ~~ 1 -)-

	

N
G

	

.,77

Thus the sequence i„(x) tends to + for almost all x. As a matter of fact,
by Lemma A for almost all x and for any N ~,., ; (x) G N only for a finite
number of values of n, which is equivalent with the assertion that lim
for almost all x .

	

"- - oc.
By Lemma A it follows from (2. 4) that for almost all x each number

k occurs only a finite number of times in the sequence „(x) ; thus if we
denote by (x) (k- 0, 1, . . . ; n -- 1, 2, . . .) the number of occurrences of
the number k in the sequence ,jx), ,„ I (x), . . . then r, ;. ,,(x) is an almost
everywhere finite and measurable function, i . e. a well defined random vari-
able . We shall write for the sake of simplicity r, ; . I (x) = 1, ,,(x) .
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It is quite easy to determine the probability distribution of
Putting

(2.6)

	

P,: . „ (s) = P(I": . (x) = s)

we have evidently by (2 . 2)

(2 .7)

	

P,; . „ (s)=

(2.9)

It follows from (2 .7) that

(2.8)

	

P,: . (s) _ IA I

and thus we obtain for the generating function of the random variable
the simple formula

>' P,., , (S)

P . ERDÖS AND A . RÉNYI

11
4j k

1
-1 . . . (q-, -1)

(The special case n = I of formula (2, 9) is given already in [2].) Clearly

(2.10)

	

M

	

(Y))_ 2: P (~ (Y) = k) __ ~, -I - < + x .
qj

Thus the mean value of the occurrence of each digit k (k-0, l, . . .) is
finite. Now let us put

(2. 11)

	

m„ (x) = su p

and

(2. 12)

	

m (x) = f im m„-(x) .

(As to jx) - m„,I(x) = 0 the limit (2. 12) always exists.) m,,(x) and m(x) are
generalized random variables in the sense that they may take on the value
-~-- c, on a set of positive measure. Clearly m(x) is a Baire-function of the
independent random variables f,,(x) (n -- 1, 2, . . .) which does not change its
value if a finite number of the aJx) change their value . Thus, according to
the law of 0 or 1 (see [6J) the probability P(m(x)=s) is for any s= 1, 2, . . .
either 0 or l . Similarly the probability P(m(x) = + oc) is either 0 or 1 .

Our first result decides when these two possibilities occur .



(2. 13)

if and only if
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q,

P(rn(x)-=s)= l .

P (m (x) _ -F- ~z)

	

1

for all s = 1,2— . .

(2.16)

	

+ .x

(n=l,2, . . .)
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1THEOREM 1 . Let us suppose that q„ - q- 1 and ' < + - and put
„-1 qa

S

f

		

R'

	

L

	

, x for some positive integer s, then we have-

	

butt

	

R; <
-1

(2. 14)
We have
(2. 15)

REMARK 1 . First of all, the assumption that q„ q„_, does not restrict
the generality, as clearly this condition can be fulfilled always by reordening
the q„ according to their size, and this reordening, though affects the expan-
sion (1), does not affect the joint distribution of the random variables F„(x)
and thus does not influence such properties of the sequence F„(x) which
depend only on the values and not on the arrangement of these variables .
Especially such a reordening does not affect the distribution of the variable
m(x), because m(x)---s means that there can be found an infinity of
s-tuples of different positive integers n,, n :,, . . ., ns such that F,,,(x) =F,,,(x)	
- = ,,,Jx) but only a finite number of s-}- 1-tuples m,, m.,, . . ., ni- I such
that F (x)

	

(x)

	

W.
REMARK 2 . Let us put !,(x) _ = lim I ,,, (x) . It is easy to see that

P(m(x)_ ,II (x)) = 1 . As a matter of fact, if m (x) s, there are an infinity of
s-tuplet, n,, . . . , n, such that E,,, (x) = F,,,Jx) ; as we have
lim F,,(x)= -} c for almost all x, this means that li(x) = s. Conversely, if
N-Y+b

y (x)

	

s then there are an infinity of s-tuples of equal digits, and so m(x) - s.
Thus the assertions of Theorem I hold for p(x) instead of m(x) too.

PROOF OF THEOREM l . Clearly to show that

implies m(x)

	

s for almost all x, it suffices to prove that the series

(2. 17)

	

~

	

P(F"AX) = F;~Ax)

	

(x))

converges. As a matter of fact, if the series (2 . 17) converges, then by



00

(2. 18)

(2.21)

(2 .22)

(2. 24a)

and

(2. 24b)

As evidently
` .

1
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Lemma A for almost all x only a finite number of the events P ;,,(x) -

	

_
_,(x) will occur, which implies m(x)

	

s. But if n, < n, < • • < iz,, then

and thus the series (2 . 17) is equal to the series

(2 . 19)

	

~

	

n=-l
12 " 17

Now we have clearly

Thus if (2 .16) holds, then the series (2 . 17) converges, which proves our
assertion, that (2. 16) implies m(x) s for almost all x . Let us suppose
now that

— I

q-_ . . . q,_ ,

1 R,, 1=-r x .

1

Let us denote by

	

the event

	

F,,, (X) = F,,,(x) ~

	

{ x)
(1

	

n, < n, < . . . < n). Then as above, it follows that

P(A,,, ;,_	) -
q,,_

	

. . q,,,,

Now we use the inequality

a,
(2.23)

	

a ;, a;.,

	

-a;,.

	

k l1 l

	

a;l

	

l

	

2	 -~
l

.t-I

valid for any sequence a ; of positive numbers and for k= 1, 2, . . . . (2 . 23)
is trivial for k= l and k = 2 and follows for arbitrary k easily by induction .
It follows that
	 1	R:`

(s - 1)!

- R1
q

	

q

if s--=2

if s_3 .
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and the series

	

j, is convergent, because

it follows from (2.21), (2.22) and (2. 24a) resp. (2.24b) that

(2.25)

	

'

	

P(A,,,,,_ . . .„) - + c,,-- .

(2 .26)

	

B~N'~ -

P

	

A., .(2.27)

Thus we have

M

	

Cc

, .=1 ql

	

,=1 -=a (~~

	

~e=1 q'„ j_,," q;

	

~,n=1 qd' )

P (A

, s

tot

We shall apply now Lemma C For this purpose we have to verify the ful-
fillment of condition (l . 1) .

Let us arrange the s-tuples of positive integers n, < n_ < . . . < n.,, in lexi-
cographic order. We have evidently, putting

P (A,,,

	

),

B

	

1
)l
2s-k'

~B-V
_F

j s, (2s-k	 Ri'`
J Lk j s

	

(2s-(2.28)

	

l k) !
P(A,,, . A,,,)1

	

BIB

which shows, that condition (1 .1) is satisfied, because by supposition
lim BN - }

	

.

Thus we may apply Lemma C and it follows, that with probability I
an infinity of the events A,_, occur simultaneously . But this means that
P(m(x) -- s) = 1 . Thus if (2. 16) and (2. 21) both hold, we have P(m(x) - s) -
=P(m(x)-s)=1 and thus P(m(x)-=--s)-1 .

On the other hand if (2 . 21) holds, for s = 2, 3, . . . then P (m (x) - s) =1
for s-2, 3, . . . and thus P(m(x)=-fi- )=1 .

An other question, related with Theorem 1 is the following : how many
of the first N digits i (x), . . ., aFx(x) are different? If we denote this number
by D,, (x) and by C,,,,: (x) the number of equal k-tuples among the first N
digits, we have clearly
(2.29)

	

N-CN, 2(x) _ DN-(x) - N.

It follows by what has been proved above that
tically to l .

D..,-(x)
N	 tends stochas-
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By a somewhat more refined argument it can be proved that D.,,(x)
N

tends almost everywhere to l, i . e. the following theorem is valid :

THEOREM 2 . Suppose q < + Let D\-(x) denote the number of

different numbers in the sequence , (x), . . . , r,-(x) . Then far almost every x
use have

(2.30)

	

l
N -Cr
im

D,,, (x)

	

I .

PROOF . With regards to (2. 29) to prove Theorem 2 It suffices to show that

(2.31)

	

lim CN x)-= 0

for almost every x . Now we have M(C,-. -(x)) _

	

n - = Nhy where

lim h,-= 0 further D''(C	x)) _ KNh,- where K is a constant . It follows

by the inequality of Chebyshel , that if s > 0 and N is so large that h < f 2,
we have

(2.32)

	

P (C., , (x) ,N) < 2 Kh,-
FN

It follows that

(2.33)

	

1, P (C (x) ~; n-) + .

It follows by Lemma A that

(2 .34)

	

lim C ; (x) =0
._C

	

n-

for almost every x, and therefore by (2 .29)

D„_(x)
(2.35)

	

lim - ., - - 1

for almost every x . But clearly if n= < I4' < fn

	

l)- we have

D,-(x)

	

n

	

D,-(x) -(2 . 3b)

	

n + 1 I = - N - - 1
and thus it follows that (2 .30) holds for almost all x. This proves Theorem 2 .

REMARK . For the validity of Theorem 2 it is sufficient - as can be
seen from the above proof - to suppose instead of the convergence of

only that lim 1

	

n =0.
q ,

	

-, , N „=- ; q„



(3 . 1)

should hold.

PROOF. Clearly

(3 .4)

In this case

(3.5)
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§ 3. Some other statistical properties of the digits

It seems plausible that if q„ tends very rapidly to + the sequence
a,;(x) of digits will be increasing from some point onwards . This is in fact
true, as is shown by the following

THEOREM 3 . The necessary and sufficient condition for the sequence
t, ;(x) to be increasing for n - n„(x) for almost all x is that the condition

(3. 2)

	

P (E„T, (x) ~„ (x)) =

	

q ;, -j _ q,, + 1
2q„_,

Thus if (3 . 1) holds, then
P

(3.3)

	

_ P (C„-, (x) - ~,, (x)) < + -

tq,,
T

i q-,,

q, , q ;z+b

~l S P

	

(x) = s;, (x),

	

(x) F;w (x)} '

	

P (~ +) (x)

	

- (x)
a-- '_

2

	

P( „ (x)

	

f„ , (x) - ~, . (x))-

As

(3.6) P (~„ (x) _ ~„+~ (x)

	

(x))
q„

	

h

	

q,,

q„ q„+, q, 2

	

3q,,-,

103

and therefore by Lemma A for almost all x, t„-, (x) > E ;;(x) except for a finite
number of values of n. This proves the first part of Theorem 3 .

As regards the second part, let us suppose
G
t _q ;,

it follows that condition (1 . 1) of Lemma C is fulfilled. This implies that for
almost all x (x) < F,Jx) for an infinity of values of n ; thus Theorem 3
is proved .

We have seen, that ~,Jx} tends for almost all x to x . One may ask
what can be said about the speed with which F„(x) increases. In this direc-
tion one can easily prove results of the following type
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THEOREM 4 .
1

=r 1

	

t'„ (x)

P. ERDÖS AND A . RÉNYI

for almost all x if and only if

logq ; <
T x

, .

PROOF of THEOREM 4 . The proof of the sufficiency is
the theorem of B. Levi, taking into account that

(3.7)

	

M

	

q, ; r-r k
As the variables ,„(x) are completely independent, the necessity follows

from the three-series theorem of Kolmogorov [6] .

§ 4 . On the set of all digits

In this § we consider the following question : what can be said about
the set S(x) of those positive integers, which occur at least once in the
sequence ,~:jx), Clearly the probability that a given number k is not con-

tained in S(x) is equal to H (1- 1 and is thus positive for all k. More-

over, it is not difficult to find an infinite sequence of integers k ; (j- l, 2,,. . .)
such that with probability 1 only a finite number of elements of the sequence
k i are contained in the sequence f ;,(x) . As a matter of fact

(4. 1)

	

P (k E S (x)) - - 1- jf 1-
k q ,, (

and thus
(4.2)

	

lim P(k E S(x)) = 0 .

Therefore an infinite sequence k, < k, < . . . < k i < . . . can be found (depend-
ing of course on the sequence q,,) such that

(4.3)

	

P(ki ( S(x)) <
7=1

By Lemma A our assertion follows .
Clearly we have also by the general formula

(4.4)

	

P(AB) = P(A) ; P(B)-P(A ,-B)

and by (4. 1) if k < j

(4.5)

	

P(kES(x),iES(x))-=1~

immediate by



(4.8)
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-r+m

	 1 < l
2

then S(x) contains with probability l an infinite number of elements of the

1 05

As (I--2) I_l
T,

	

q,

(4.6)

	

P(k ( S(x),j E S(x)) = P(k E S(x))P(i E S(x))
if j + k, and therefore if (k,} is such a sequence that (4 . 3) holds then by
Corollary 2 of Lemma C with probability I S(x) contains an infinity of ele-
ments of the sequence {k ;} . Clearly if k is sufficiently large so as to ensure

(4.7)

we have

-k q„

	

2

and thus putting

(4.9)

	

K(x)-

	

1

with respect to (4 . l) and (4.8) the series (4.3) is convergent or divergent
according to whether the series

N ~~ 1

	

wívo(410).

is convergent or divergent .
Thus we have proved the following

THEOREM 5 . Let k, < k, < . . . < k; < . . . be an arbitrary infinite sequence
of positive integers and define K(x) by (4 . 9). The set S(x) of all positive
integers occurring at least once in the sequence {F„(x)) contains for almost all
x either a finite or an infinite number of elements of the sequence k ; accord-
ing to whether the series

(4. 11)

	

1 K(q)
-I q„

converges or diverges .

EXAMPLE . If q,, -- n', then S(x) contains for almost all x only a finite
number of elements of the sequence k;---j', but an infinite number of ele-
ments of the sequence k; = j' .

It follows easily from Theorem 5 that if the sequence ;kilt has positive
lower density, i . e . if
(4. 12)

	

lim
ICXx)

= a > 0



1G6 P . ERDŐS AND A . RÉNYI

sequence {k;',, because in this case K(q ") does not tend to 0, and thus the
q"

series (4. 11) is divergent. If q„ does not increase too rapidly, for instance if

q"-1 - C where C > 0 is a constant, then the same holds also under the
q„

weaker assumption that

(4. 13)

	

lim K(x)
_ ,~ > 0

> Cc x

i . e . that the sequence 11cj has positive upper density, because in this case
if q, ,

	

x < q„ then
K(qK(x)

	

I K(x)
q„ - q„ - C x

and thus (4 . 13) implies lim K(q '' ) ? "- > 0 and thus the divergence of the
,- -00 q„

	

A
series (4. 11) . If however q,; =2"" and k;'; consists of the numbers
2-" T 1, . . ., 2° " -1 then the upper density of the sequence Ik ;} is 1i2 but
(4. 11) is convergent .

Now we prove the following

THEOREM 6. The density of S(x) is with probability 1 equal to 0 .

PROOF. Let (., -\ .(x) denote the number of those P, ; (x) (n -- 1, 2, . . .) which
are

	

N. Clearly if we prove that

(4.14)

	

P~ lim `'N) =0~ 1

then the assertion of Theorem 6 follows . To prove (4. 14), by Lemma A is
sufficient to show that the series

(4. 15)
1 «_,,, (x)

21

	

Jf

is convergent for any F > 0. As a matter of fact the convergence of the series
(4. 15) implies that for almost all x

(4.16)

	

lim	
(x)

-0

C.-,- (x)

	

01, -1 (X)
and as for 2 1 --N<21- ', we have

	

N

	

= 2 - 2I;+1

	

it follows that

uV(x)
(4.17)

	

lim		 0
N



for almost all x. As

(4.18)

	

M(a,-(x)) - L 1 +

	

N = Nd,,-

where lim d,-= 0 and
-V-4- cr
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(4. 19)

	

D'(r. j (x)) _

	

-1 1-	`- Nd,-

it follows by the inequality of Chebyshev that if N is so large that d,- < F 2, then

(4.20)

	

P(a-x-(x) - NF) = 4dA- - < 2
NF= NF

It follows that the series (4 . 15) converges, which, as has been pointed out
above, proves Theorem 6 .

§ 5. On the order of magnitude of vA (x)

We denote again by r, (x) the number of occurrences of the number k
(k	0,1 . . . . ) in the sequence

In this § we prove

THEOREM 7 . Let {q ;, ; be an arbitrary sequence of integers (q„ -- 2) for

which

	

< + a . If C is an arbitrary positive number, then for almost all x

log k

	

log k - log log log k

	

C	log k
(x)

	

log log k

	

(log log k)=

	

_
(log log k)'

holds at most for a finite number of values of k .

REMARK. It is remarkable, that the growth of r+;(x) depends only so
weakly on the order of magnitude of q,,, that such an estimate as furnished
by Theorem 7 can be given for all sequences q,, . The result of Theorem 7
is best possible as is shown by

THEOREM 8. If g(k) is an arbitrary sequence of numbers tending to

, one can choose the sequence {q,, ; so that ~l 1 < -} !,, anti

log k _L log k- log log log k
-g(k)	

log k
(5. 2)

	

~'A (x)

	

log log k '

	

(log log k)"

	

(log log k)=

is satisfied for almost all x for an infinity of values of k .
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(5.3)

	

P(',: (x) - N) _
=S

(5.6)

Thus if

(5 .7)

we have

(5.8)

4

P ( v,(x) -- N(k))

P . ERDŐS .AND A. RÉNYI

PROOF OF THEOREM 7. We have by (2 . 7) for N = 1

	 1		II ~ 1

and thus putting
1(5.4)

we have
C_

	

N

(5.5)

	

P()'I (x) - N) -y r I,
.

	

A S!

Let d > 0 be an arbitrary positive number, and choose k,, so large that fol -
k = k,, we should have r,;

	

e - '' ; then we obtain for k

	

k,,

P(r ,(x) = N) 2e - -'\-, '
N! '

_

	

log k

	

tog k- log log log k

	

Clog k
N(k)

	

log log k

	

(log log k)'

	

(log log k)'-

P(r'x (x) ? N(k)) 2 N(k)! .

As by Stirling's formula

(5. 9)

	

log N(k) ! = log k- (C+ l) log k + O l log k (log log logk)')
log log k

	

(log log k)'
it follows

(5.10)
(('+1-d) log 1,

	

( logk (log log logh)'2
e

	 )
log log I:

	

(log log );)2

k

It follows by choosing d > C+ 1 that the series (5.8) converges. Thus we
may apply Lemma A, and Theorem 7 is proved .

PROOF OF THEOREM 8. It is easy to see that for k* I

(5. 11)

	

PO,,,(x) - N, v, (x) - M) + P(-r,,.(x) - N)P(v,(x) - M).

It follows by Corollary 2 to Lemma C that if N,(k) is chosen in such a
manner that the series

00

(5. 12)

	

P(1',; (x) = AT, (k))
1:==I

diverges, then v,, (x) = N, (k) for almost all x for an infinity of values of k .
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But if

(5. 13)

	

N, (x) - log k

	

log k (log log log k) _g(k)	log k
log log k

	

(log log k)=

	

(log log k)'
then

yfh)logA

lj.'~'1~~

	

elogloak t-A ~t l' )
(5.14)

	

P(i,, (x) > N, (k)) = L, .
N

(k) 1

	

L

	

k

where L,, L :, are positive constants . Thus the series (5 . 12) is divergent pro-
vided that

(5 . 15)

	

g(k) > 2 log

But clearly if g(k) is given such that g(k)

	

-;- cc, the sequence {q,, ; can be
chosen so that r,; should tend to 0 arbitrarily slowly, e . g . that we should
have

(5. 16)

	

r,

	

e

	

-

which implies (5. 15) . Thus Theorem 8 is proved .
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