ON SINGULAR RADII OF POWER SERIES
byl
Pavr. ERDOS and Arvrip RENYI

Let /2] denote the class of analvtid functions

(1a) )= X au2?

which are regular and unbounded in z|] < 1. According {o D. Guer and
W/ Meyer—Koxiel [1] we call the radius R, defined byl a = rei%, 0 <Jr g 1
singular for f{z)] if f(z) is unbounded in any sector z] <1, ¢ — ¢ < arg 24 <
< @+ & withl 8 > 0. Al radius which is not singular for f(z) is called requlan
for f(z). In [1] it has been shown that if f(z) belongs to the class @ )and the
power series of f(z) has Hapamarp-gaps| i. e.

=1

(1h) fe) = X e
£=0
withl
it (k=0,1 .
(2a) n, 297 Ly

then every radius is singular for f(z). Clearly for every f(z) € 2, there is at
least one singular radius. Iil is easy to see that if we suppose only] that the
power series (Ib) has FABrRY-gaps| i. e. if instead of (2a) we suppose onlyi

(2b) lim L Ny_a,

X— = xi‘ik{x
then it is possible that there is only one singular radius for f(z). Al simple
example is furnished by

w k=1
1 g
(@a) he) = Z = Dt
=1 j=0
where ¥, = N/ HIA W =1,2, .. )] Clearly f(z)is regular in |z < ]
and if m is real, we have
lim fy(z) = H ca

x—+1-0
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thus f,(z) belongs to the class %] and R is a singular radius for f,(z). On
the other hand we have by (3a)

2

(3b) hiz) = 3%_‘2‘ for |z] <1 ;

thud every radius EJ| with (I < ¢ < 24 is regular for f,(z)|
It is also clear from this example that to ensure that every radius should
be singular for f(z) it is not sufficient to prescribe the rate in which the ratio

L8
T nrex

tends to O for o — 44 ca. As a matter of fact, for f,(z) defined by (3a) we have

1 ., 83
= ‘\_ 1=
T mp<x -Ns

where § is defined by the inequality N{ < x < N, and thus we can choose
thel sequence NJ so that

1 -l
— 2 1<)
X np<x
holds, where E(x) (of = 1, 2, . . .} is a sequence of positive numbers, tending

to O arbitrary] rapidly.

P. Erp6d [2] has shown — answering a question of GAIER and MEYER—
Koénid — that to ensure that every radius should be singular for f(z), it is
not even sufficient to suppose that the exponent’s n, of the lacunaryl power
series (Ib) of f(z) 4 R satisfy the condition

(20] lim (ﬂk-!-l — ﬂk] =+ ca .
.

The question arises, for which sequences 7, does there exist a function
f(z) belonging to the class (2] and having the power series expansion (Ib),
which has only one singular radius? Clearly it is impossible to give a criterion|
which depends only on the rate of growth of the sequence =, because the
number-theoretical properties of the sequence 7, come in. As a matter of
fact let the sequence n, satisfy] the following condition :

D) for every i (m] = 1] 2] . . .| there ewists an integer k,| such that for
H =k, ny is divisible by 27

In this case if E] is a singular radius for f(z) then f,, where ¢’ — ¢ +
+ 2x1/2™ is also singular for any pair of positive integer§ # and m ; as a
matted of fact, if Zi(1=1,2,...) is a sequence of complex numbers with
#Z] <1, ¢—a<arg zj< g Heaand

i 1 = 3 e

then putting ¢" = ¢ H 22l/2™ and 2] = 2z} exp (27 l/2™) we have ¢’ — ¢ <
arg zj < ¢]+ @ and as the series for )'i(zj) differs from that for f(z))
only in a finite number of terms, we have also

lim |f(z})] = + oo,

jot =
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As the set of values of ¢ for which &, is singular for f(z) is clearly olosed
(see [1])] it follows that every radius EJ is singular for fz)] Now
the divisibility condition D) implies (2¢)] but (except for this) is compa-
tible with every possible order of growth of =z, ; by other words if o, is
an increasing sequence of positive integers, tending arbitrarily slowly
to + oo, then there exists a sequence m, of integers having the property D)
and satisfying the condition n,.; — ny < w,4 Thus our question has to be
modified to some extent,. We ask for which sequences », does there exist
a sequence n'fg such that (0 € n) — ny € o) where oy is a sequence tending
arbitrarily slowly to + = and a function

(1¢) f2) = 2 o,z
k=0

belonging to the class /2, which has B as its only singular radius? We shall
prove, by using standard methods of probability theory, that if =, satistied
the condition

(2d) lim inf (nk-—nj)r—ji =]
() Fo

then there exists always such a function,
Thus we prove the following

Theorem 1. Let = be an increasing sequence Of natural numbers) satis-
fying the condition (2d)] Then for any sequence wy of natural numbers for which
o= H
therd exists a sequence 7" of natural numbers such that 0 Q]qa.,j — 1y < o,
and an analytic function f(z), whichl is regular #» the unit| circle has the
power series? (Ic), is unbounded in |z < 1, but s bounded in the domain

[z2] <1, larg 2| > @ for any & > O.

Our proof of the above Theorem is not constructive ; we prove only
by using probabilistic methods, the existence of a suitable function f(z),
but can not give it explicitely|

The condition (2d) plays a role in other problems of a similar kind
too ; e. g. P. Ernés has proved [3] that if (2d) is satisfied, there exists a
power series (Ib) which converges uniformly but not absolutely for [z] = 1.

Proof of theorem 1. We shall need the following

Lemma.® Let mj < my < ... < my be natural numbers, vj v,y ..., 4
independent random variables, each of which takes on the values 0, 1, ... ,8 — 1
with the same probability I/s. Let 2 be a complex number such that [z] < 1 and
28| — 2] 2| 1. Let us consider the random variable

d
(4a) Z= > zmitv
=I

I f(z) cam be chosen so that its power series has nonnegative coefficients.
%) Al similarl lemma has been used in & previous paper [4] of the authors of the
present| paper.
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Then we haved)

d
5) plz s 2% |l 4, s
' §1— 2|
Proof of the Lemma. Let us put 2 = r ¢® and denote by C resp. §
the real resp. imaginary part of Z] i.e. we put
d

(4b) C = N ™t cos (m)+ v @
and Js{

(4o} 8= S emensin (m + v g
As

Z, < V2 max(/0,[S))
we have evidently
2)/2 2/2d
(6) P{‘Z|2 4f )8 {\012 V2 d} f| L_J._}

Now letl us calculate the mean value of ¢!< where we shall choose the valud
of the real number t later. We have

4 -
M {¢/€) = [ I M {grr”’f*"*‘co«mfmw} -

§—
f'N(”'f* ) cosN(m,; -I—h)qu])
l [;‘ N’ |8 h (
As
— D> ymitheos(m; + k)@ | < |— sz‘f’* <
!Sh=0 ! | ;3.&0 8|1~—2]
and
s—1
] g N(mj+ k) cos”(mj~i—| h) 'H| g1 (iv=23,].. )
|8 k=0
we have for 0 < jt| <1 1/2
' L
7 MY < |1+ —— -} 12
" s o g )
Evidently|
_ . 5
plc 2dl=P{02%lwlﬁ-ﬂcg—ﬁlzdr\
l s|1——z|f sl1—2|f | s|1—2f
3 Here and in what follows P {/ . . } denotes the probability of the event in the

brackets and M {E} the mean value of the random variable £]
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further if 4 < 0, then

[ ,V . 216_:.11
(8a) P||0 sl—zl]ﬁM{e Ja st
and -
(8b) Co Si] 3"” S M (e} ¢ ST
By choosing in (7) X
S E—a

we obtain, taking into account that 8)2 — 9 > 2 and thatl |1 — 22 < 4

2V2d|
P‘ < 2e 3252
{es] | 51—z
In the same way it can be shown that
d
(9b) plis = 212¢) oo am
l 8|1 ‘“'zl

Clearly (6)] (9a) and (9b) imply (5)] Thus our Lemma is proved.
Leti us choose now a subsequence #, of the sequence =y such that
bkl . <kj<. ..,

(10a) M (Fypyq — kop) = H o0
p==9
and
L
(10b) lm (R, ,, — Tk, )iert1- ke = 1
pot=

By (2d) this is possble. As a matter of fact, if 0 < ¢ <} and

1
(nkl—nj)k_ﬂ" < 1 H g then either § > [ke] or § < [ke] ; in the latter case
we have

e N S |
(M — npge) 1 < [(nk - ﬂj)k_’llk_[kel 4@ He' <1 H3e
Thus we may suppose that there exists a sequence of1 pairs (k, ) such that

k—> 4 o) j—> 4 o] (k — j| = H oo and (n] — n;)*~7 — 1. This implies
the existence of a sequence %, having the required properties.

Clearly we may rarify the sequence k] as much as we want, ; thud i
can be supposed that besides (10a) and (lob) the following threel conditions
are aso satisfied :

- l
(100) (b} = M) Q1

(10d) P < wg,
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and

(10e) kz;.?-f—]J - kzp > 64 p'Y

Now let us put

(11a) dy - kopl 1 — Ky

and

(11b) Mp; = Ny ]| ~— M) (=1,2,....,4d,)
further put

(11c) -

(114} 8p=p*
and
{ lle) N = (mpa, H s,) 5402 pg L,2/1..)

Letl us put
2aifl
{12a) Zpf = e N =01 ..48]-1
further
(12b) 2% — {;pd for 6, NJgh<g(1—~4,)N] ]
cos2a | —z, for 0<h<08,N, and (1—-8,)N,<h <N,
(clearly in thd second case zj, is obtained by reflecting z,, on the line

Relz) = cos 2md,).
Evidently

(13) |zf —121—cos2ad, =863 for p=4; H=L2].. .  N|

Let us denote by £] the contour consisting of the arc 2z, <1 ¢ <l 24 (1 -4,
of the unit circle z = ¢4 and of the arc |¢] < 2a éﬂr of the circle # "=

= 2 cos 2xnd, — e* | clearly the points 234 (A = 1, 2, .. ., N, divide thd
line ¢ | into arcs of the length 27/~ | By our lemma we have, denoting by v
(1=1,2, ...d,) independent’ random variables, each of which takes on
the values 0, 1, .. ., 5, — 1 with the probability 1/s, ,
" :d '
% | 44, | . 3

14 Pl max > * mp—vp| s —b < 4N g 32
(14) 12;31,-%3‘}’ > a0 S 40
Now putting

dp
(13) Q,(2) = > My vy

i=1
we have

{16) Q)| = dy(mpy, +5p) for 2[<1
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and thus for any two points z, 2’ of the closed unit circle

an) Q) — Q) 1 S dyfmpg + 5} 12— 1.
Thus we obtain
2 | d,-2=
T P
18 X z)| £ max 2%, Mpj+vpy |
(18) n;-??lQp )| Ig;_,g"“ o
and therefore by (14)
(19a) p{max[QP )= 7d,) <4Npe 323»
zeLy 8y 6pl
and thus with respect to (10a)—( lle) that for p 2| 64
(19b) P{maxiQP(z)j > i < 8pfe~? .
. €Ly sz
Thus it follows that
7d,
(20) 2 P max|QP(z)l > ——~}
p=1 - :

converges, and therefore, with probability 1, only a finite number of the
inequalities

7d
max |Q,(z)| =2 —2
zetﬂ‘ p(2)] o

is satisfied. )
This implies thatl the values of »,; can be chosen in such a way that

: 7
(21) max |@,(z)| < Ty
€Ly P?

for all p > pyi
Let us put now

= 1
(22) 1) = 2 PRAASC

where the polynomials @ (z) are chosen in such a way that (21) is satisfied
for all g = p,| Clearly f(z) is regular in |z |<J 1, and also unbounded, as all
its coefficients are nonnegative and @,(1) = d,. On the other hand, for any

¢ # 0 mod 2n and any ¢ > 0 withl O <1E,E1—-E<jtp|+ s < 271 we have for
aII values of pj for which 2 =/f <9 —=eand 2x (1 — 1/p) = ¢ H e, for
g—egarg a< g+ ¢zl <1 (by the maximum principle)

], . o B
d_piQp(z) =
for p >| p,. But this implies, that f(z) is bounded in the sector z/ < 1, ¢ <
<jarg z <|g-He, or, by other words, &, is the only singular radius of f(zT‘
Taking into account that

o gl
VS H =P = O,
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evidently f(z)] satisfies all requirements of Theorem 1., which is therewith
proved.

It can be shown that the condition =] — ny = O(w,) with o,
tending arbitrarily slowly to + oa can not be replaced in Theorem 1. by
7 = 7 = 0 (1). We prove namely the following result :

Theorem 2. Let my be an increasing sequencel of natural numbers, such
that ny is divisible by 2m for all # > &, (m = 1, 2, . . .)] Let

oo
—

(23) f(z) e W €y 2t b

k=0
be regular and unbounded 77 the unit circle, where the sequence b, Of integers
is bounded. Then every radius E, is singular with respect to f@).

Proof of Theorem 2.4 It suffices 1ol show that fi can not be bounded
in a sector |z] « 1, a < arg a < f, Thid will be shown by proving that if
fizy would be bounded in such a sector, it would be bounded in thel whole
unit circle. As a matter of fact, let us suppose that. fz is given by (23) and
that b < B (§ = 1, 2, . . .) and put

24) 0= Do (il9 B
Then we may write '
B
(23b) @)= 3 22
j=—8

H
Let us consider the values zi:em 2*| where m is a fixed natural number,
such that
m > 4a(B + 1)

25 gm 7 TS
(25) i—u 1
and [ takes on the values 0, 1, ..., 2% — 1. Putting
(26) Fisp(r, ) - {2‘ Gy 1™ e*‘ﬂ*"] (reé®)’  (—B<j<+ B)
kzkm
br=J
we have for 0 <r<1/0<d < 2rand =01, .... 2" —1
2B
(23¢) flre® z)) = 278 21 Fyr]e) 2+ 4
=0

where A denotes a term which is bounded in the unit circle, thd bound de-
pending only on m .
As a matter of fact we have

(27) < Jled = 4

E<<km

4 It will be seen from the proof that the condition ,,ny is divisible by 2 for all
E=l k(M =1,2,...)1 could be replaced by the following more general condition
therd exists a sequence A, m =1, 2, . . .) of natural numbers, such that Ap-—> + o
and #ny is divisible by Ay for ¥ > &nx (m =1, 2, . . )Y
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Now by (25) there are atl leastl 2B + 1 terms of the sequence z (I =

=0 1, ...,2M -~ 1) lying on the acca — 6 <arg 2 < f —6, |zl = 1.
Let us denote these numbers by 2, 2;4/14. .., 2284 let us fix the value
of 6 and put
28
{28a) Qs(r, O} = 2 Fr,8) &

We have by the interpolation formula of Lagrange

2(0)

zﬁ‘Jrj) (¢ — 2f1+j)

28
{28b) Qu(r,0) = 2 Qors 21,45) —
=0 2(

where

28
(29) Q) =Jl=g (& —245) «
As by supposition therd exists a constant. Kl such that |f(z)| < K for
Izl @1, a <arg 2 < fl we have by (23c)] (27) and (28a)
(30) Qulr) 24| K+ A (j=01,..., 2B).
Thus it follows, that for |[| = 1 we have
(K+4)(2B+1) '

7 2B
sin —
2m

1) @l £)] <

It follows from (23¢) for [ = 0O that
(K +4) ("B +1)

(32)  |flre®®)] = HA for fgn<1land 06 <I2n]

2m

As the bound on the right hand side of (32) does not depend on # or 6, it
follows that f(z) is bounded in the whole unit circle, which contradicts our

hypothesis. Thus Theorem 2. is proved.

It remains an open question, whether condition (2d) is best possible.
In other words, the following problem is still unsolved :

Let

f(z) = k%:ck 2

be regular and unbounded in iz| < 1. Suppose that

i
lim inf () — 2,)%

(kj)-+ o
is it true thafl all radii B (0 < ¢ < 2n) are singular for f(z)?

=IQ1>1

(Received July 1, 1958.)
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HATVANYSOROK SZINGULARIS SUGARAIROL
ERDOS P. éd RENYI A,

Kivonat

Legyen f(z) az egységkirben| regularis éd nem korldtos fiiggvény. A 2 = rei¥l
(0 g n < 1) sugarat) melyet a rovidség kedvéért R,-vel jeloliink] D. GAIER
éd W. MeveErR—KONIGl nyoman| (lisd [1], [2]) szinguldrisnak] nevezziik| ha
f(z) nem korlatos &’Lz] <1 ¢ — &< agz< g H akbrcikkben, akarmilyen|
kis pozitiv szAm IS &1 A nem-szingularig sugarakat] regulariq sugarnak| nevezziik.
A jelen dolgozatban a kovetkezd tételeketl bizonyitjuk be :

1. tévell Legyen| nglermészetes szdmoll e g y ndvekvs sorozata| amelyre

1
(1) liminf (n, — ﬂj)d =1
(k=j)=H =
Legyen| w) eqy tetszolegesen lassanl végtelenhes tartd szdmsorozat! AKkor [étezikl
olyan

(2) flz) = :é; ¢ 2

alakdl hatvdnysorral bird, az egységkirben requldris e's nem koridtos f(z) fiigyg]
vény, amelynek csaki egyetlen szinguldris sugara) van, és amelynek ny kitevsil
eleget feszneld a
) 0 < ny—n, < oy
feltételnek!

Az 1. tétel a dolgozatban valészinfiségszémitasi mddszerrel van be-
bizonyitval

2. tétel. Legyen, A, (m) = 1, 2, . .. ) egy természetes sxdmokboll alld
tetszoleges movekvd soroxat e's ny egy olyan természetesl szdmokbdll dlld sorozat,
amely| azzal a tulajdonsaggal] bir] hogy az ny soroxat fagjai véges sok kivétellel
osxthatdk A,,-mel (m = 1, 2, . .. )| Legyen| b] tetszéleges| egész szdmokbol dlld
korldtosl sorozat. Tegyik fel, hogy

)= > 04 2t by
n=1

az egységhorben| requldris éd mem Lorldtod figgvény| Akkor f(z)-re vonatkozdlag)
az egységkor minden sugarq) szinguldris)
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0 CHHI'YJISPHBLIX PAJUYCAX CTEINEHHBIX PAIOB
P. ERDOS = A. RENY]

Pesiome

IMyers QynKuss f(z) pery.isipHa ¥ HeorpaHuYeHHa B eUHMYHOM Kpyre.
Pamuyc z=re” (0 < n < 1)] obo3Havaemblil i Kparioery yepe3 By| creays
D! Gaier-yl # W. Mever—Koénig-y (CM [ ]] [2])] HaseiBaeTcsn cuuryusipq
HbIM, ecny f(z) HeorpaHuueHHa B Kpyrosom ceKTope |f < 1, ¢ —a<argz<
< @ -H e npu JoboMTONOKUTENLHOM & Hecnurynsapupie paidychbl HasbiBalOTCs
peryasphuiMi. B Hactosued pabord fokaseiBaloTest CIeyrOlMg TEOpeMb] :

Teopema 1. [Tycnib wy €cris 603paACcMaoas) NocAe008mneAsHOCY HAIMy pas-
HbiX uucen; 0t Komopoil

1
(1) lim inf (n, — m)k7 =1
(k=)=
Iycmy o, ecmyl KAk yeooHd| sedaenrol cmpesamasncs) k& deckoneqHocmit 4LCA06AA!
nocaedosamensrocms) Toedd cyujecmsyenn] maxas pe2yaspras u HeO2PAuUYeHHAS
6 eOuHuHoM Kpyze yrgud f(z)| pasaaeaemas ¢ cmenerinod pad euod

oo

@ fe)= Xepam

k=1
Komopas) uMeem auum eOuHcmeenHsld cuneyaapubl paoduyd u oad xomopod
6bl10AHERHO YCA06UE

(3] U —7 yday.

Teopema | jo0KaspiBaeTcs] B padorg TeopeTHKO-BEPOATHOCTHBIM METOJ0Mq
Teopema 2. ITycmy A, (m =1l 2, . .. ) wodas ee3pacmaiowas nociedosad
MeABHOCME HAMYPAALHBIX HUCeA] a Ty NOCACOOSMEABHOCIS HAIMY PAABHBIX UlCe,
3a UCKAYueHUEM KOHEYHO20 uicaq Oeasmjuxc Ha A, (m| = 1] 2,. . )| Hycmy| b
M00as G2paHuteHHAA NOCACO06AMEbHOCMY el duceal IIpednoaocum, «ma

Pyrryus
f&y = 2 oyamn
hi=]

pezyAIpHa) 1l Heo2PAHUYeHHA 6 euHuIHOM Kpyze. To2dd omuocumesno f(z) eca
Kuid paduyd edurudHo20l Kpyeq cunzyaspen.



