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Introduction

Every real number x (0<x<1) can be expanded into Engel’s series
(called also “Engel’s series of the first kind”, see PERRON [1])

1
O _'"+thq7+ R

where the integers ¢, —g.(x) are defined as follows:
We denote by T,x the transformation

@ T1x=xi%

—1 O<x<1).

(Here and in what follows {z} denotes the least integer which is =z) We
define a sequence r.(x) by the recursion

3) ro(x) =x, ru(x)=Tir.(x) (n=0,1,...)
and put .
) 1 = Gnpa(X) = ?’-I—zx—); (n=0,1,...).

It is easy to see that
2§Qn §q|a+l (H=l,2,...).
Evidently, if x is given by (1), we have

1 1
5 i =
®) " (x) gni1 + Qni1Qnsz

.'

If x is rational, x%F, then T,x—? with @’ <a. Thus we have
for some » r,(x)=0. Thus every rational number % has a finite represen-
tation ]

a

b +q qz+ Tt 0
If x is irrational, then r“(x)>0 for all values of n. It is easy to see that
for irrational values of x one has lim g.(x) =+ ococ.

H—=m
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In the present paper we investigate the metrical properties’ of the
sequence ¢,(x). The results obtained may be characterized as follows. Let
us consider the interval (0, 1) as the space of elementary events, and inter-
pret the Lebesgue measure of a measurable subset of the interval (0, 1) as its

probability. Then the random variables x, =log ¢,, x,= Iog;;ﬁ- (=—=2.3,...)
-1

are in a certain sense almost independent, and almost identically distributed,
and thus for

(6) N=10gqu:x1+x2+'”+xu

similar results are valid as for the partial sums of a sequence of indepen-
dent and identically distributed random variables, e. g. the central limit theo-
rem, the laws of large numbers, the law of the iterated logarithm, etc.

In §§ 1—5 we deal with Engel's series: in § 1 some fundamental
identities are deduced; in §2 we prove the central limit theorem for the
log g.—n

n
to the normal distribution (Theorem 2). In § 3 we prove the strong law

sums (6), i. e. we prove that the distribution of tends for 71— oo

of large numbers for the sum (6), i.e. that for almost all x lim}g,—e

N—=m

(Theorem 3). In § 4 we give some inequalities which are used in § 5 to
prove the law of the iterated logarithm for the sums (6), i. e. that for almost

all x ﬁ—,l_—ogq—“—“—n—=+l dhd T By (Theorem 4).
o |2nloglogn e | 2nloglogn

Theorems 2, 3, and 4 are not new. Theorem 3 has been stated without proof

in a short note by E. BOREL® in 1947 ([3]; see also [4]. In the same year,

in his paper [5] P. LEvy announced Treorems 2 and 4. P. LEvy sketched

also the proof of these theorems, as well as that of Theorem 3. He pointed

out that if x is uniformly distributed in the interval (0, 1) the random vari-

ables &, =—log[(g.(x)—D)r.(x)] (n=1,2,...) are exactly exponentially
distributed with mean 1, and they are also almost (but not exactly) indepen-
gn+1(X)

dent. As &, is with probability near to 1 very near to x,. = log PRES)

for large n the same holds for these quantities too, and this is the real
ground — as pointed out above — of the validity of Theorems 2, 3 and 4.

1 In a recent paper [2] one of the authors considered the metrical theory of a gene-
ral class of representations of real numbers, buf the representations by means of Engel’s and
Sylvester's series do not belong to the class of representations considered in [2]. They
belong, however, to the class of representations considered by L. Bera [16].

2 Boret called Engel’s series of the first kind “développement unitaire normal”.
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However, P. LEvy did not go into details. It seems to us that — owing to
the fact that the variables &, are not exactly independent, these details
(especially in case of the law of the iterated logarithm) would be rather
cumbersome. Therefore we thought it worth while to work out detailed proofs
of these theorems. We have chosen a way which is different from that of
LEvy, as we made ample use of the explicit formulae given in § 1 for the
probability distribution of g¢., resp. the conditional probability distribution of
Gn+m, when the value of ¢,. is fixed. Besides these formulae we utilised also
the remark, made in § 1 that the random variables ¢, form a Markov chain.

In § 6 we consider Sylvester’s series (called also “Engel’s series of the
second kind”, see the first edition of [1]

Sylvester’s series® of a real number x (0< x<1)is

1

7
(7) -ttt o+
where @Q,, @, ... are positive mtegers, defined as follows:
We denote by T,x the transformation
®) Tgx=x——.)—]1—i ©O<x<1).
[x
We define the sequence R.(x) by the recursion
) Ro(x) =x, Rui(x)=TaR.(x) (n=0.1,..)
and put 1
(10) Qn+l - Qn—'.-l(x) s ; R—(x) { (ﬂ ==L T )
It is easy to see that Q, = 2 and Qm Q(Q—D+1 (n=1,2,..).
Clearly, if x is rational, x= b’ then T,x_% with @ < a; thus
R,(x)=0 for some » and therefore every rational number —i— has a finite
representation % Q] +— Q —& For irrational values of x we
have lim Q.(x)=- o and
1
(11) R.(x) = +—=t-- (n=0,1,...).
1¢+I Q

Putting X, =1log Q,, X.=log ch“ (n=2,3,...) we shall see that
-1

the random variables X, are in a certain sense almost independent and

3 SyLvesTer [6] called the expansion (7) a “sorites”. See also [7] for further bibliography.
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almost identically distributed. Thus we obtain (Theorem 5.) that the central
limit theorem holds for

Q.
2 =10 e X, rexfe X
(12) Y.=lo 0.0...05 +dy et X

As regards Q. we shall prove (Theorem 6) that the limit lim —=~

log Q»
o 2"
exists for almost all x, but its value may depend on x.

These results concerning Q, are according to our knowledge new.
In § 7, some number-theoretic questions concerning Engel’s and Syl-

vester's series are discussed, and some unsolved problems are mentioned.

§ 1. Fundamental identities for Engel’s series

In what follows we shall interpret the Lebesgue measure of the set of
those real numbers x (0 <x<1) for which some relation concerning the
sequence ¢, = g,(x) holds, as the probability of the relation in question, and
shall denote it by P(...), where in the bracket the relation in question will
be indicated. The conditional probability of A with respect to the condition
B will be denoted by P(A|B).

As clearly ¢,=gq.(x)=Fk (k=2,3,...) if and only if x is lying in
some interval
S oy T Lt oo e 1
0102 Qg2 Gurk qlqo q142. .- a1 (k—1)’
where 2=gqi=q@p=-"=q.1=k, and these intervals do not overlap, we
have

1) p()=Pg.=K= 17—

Similarly we obtain that the conditional probability of the joint occurrence
of Gnirnn=rli, Guirie =Kz, ..., §sss = ks under the condition that the values
of ¢,,¢:,...,q, are given, is

~+

1
k(k—l) sy, i T

(1.2) P(qw.{,i:ki; ] gfgSIQI; ——-,t}’n)‘:
- gn—1 1
kle e ks(ks-—'l) 'Tn_r"fo—ZE - Qn+lf}'n+2 s Qn-i-r

f2=q=q==q.=h=k=---=k. (For r=0 the empty sum is
to be replaced by 1.)

As the conditional probability (1.2) does not depend on the values of
g1,92,...,q.-1 (only on the value of ¢,) and it does not depend on the
number n either, the sequence gq., considered as a sequence of random vari-
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ables on the probability space furnished by the interval (0, 1) the probability
measure being the Lebesgue measure, is a homogeneous Markov chain. The
transition probabilities of this Markov chain can be obtained for r=20, s =1
from (1.2) and are given by
(1.3) iy =P(gnn =k|qn=J) = REe—1) k=j=2).

It follows that the probabilities p.(k) can be obtained by the following
recursion formulae:

(1. 4) pi(")zz("k—l:ﬁ (k=2,3,..),

PO— Gy 2DPal) (=23,
From (1. 1) we obfain

(1.5) 2 pukyxi= k(kl_l))_]] '

-3

Substituting x =1 into (1. 5) it follows that

(1.6) an(k)——*—

=L

2 pa(k) is clearly the mean value of the number of occurrences of the digit
n=1

k in the sequence ¢,,¢:, ...,4x,.... It is easy to determine also the
probability ¢, that the number % occurs at least once in the sequence
1, Gay -3 qn,---. We have

15 1 )
(1.7 &= k(k— )( Béh‘::.-.;i:“ =k-1G1G2. - Gur)
AT
T k(k—1) 2= ]_L Tk
J

(In (1.7) we considered the firsf occurrence of & in the sequence g,, there-
fore we supposed ¢,-1 = k—1 instead of g,—1 = k.)

We may calculate similarly the probability gx(r) that the digit ¥ occurs
exactly r times (r=0, 1,...) in the sequence ¢,. We obtain

THEOREM 1. The probability that the digit k occurs exactly r times in
the sequence q.(x) is given by

(1.8) ox(r) =

fr==01,...; £=2.3..)
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Using (1.5) we may obtain an explicit formula for p,(k). Taking into
account that

" k—2Y (—1)i-2
(1.9) —-zk(k—l)(j >) L
we obtain

b (#—2) (1)
1.10 (K ( ] e
(1. 10) palk) = g_ j—2)
As
l 1 i —Hj gpii—
(1. 11) FZWJ e w-du,
it follows from (1. 10) that ’
(1.12) Palk) = (n_‘l)! J -1 g2 (1 — e=ey-2dly,
Putting ’
(1.13) W..(k) =E§pn(f)
and )
(1.14) S-»(k)‘=?§ (D),
we obtain from (1.12) B
(1. 15) Wl(k)— I])! J-ur 1p- u(‘[ —e u)[k]-]du
and
&

(1. 16) St(k)z(nli])fj u““e"'[l—(l-—e-")lf-'l-l]da.

Similar formulae can be found for the conditional probabilities
Dk’ )) = PG =k|gn =J)=
(1.17) 1 i
k(k—'])){l‘“ifsi - =g, IEI l’lff} lu—l
(p.(k|j) does not depend on m according to the homogeneity of the Markov

chain ¢q.).
We obtain

(1.18)

i I\/ a

h=j X

Pl gl ll)ﬁ(ll |
h
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As .
hpalel g[l i) (12 0=) 525
we obtain : : -
(1.20) pn =5 2 (i)
It follows by (1. 11) that
Kk—2 ; ;
(1.21) paklj)= 1), ( J j w-te it (l—eY-idu

(we have evidently p.(k|2)= p.(k); therefore putting j— 2 (1. 20) resp. (1. 21)
reduce to (1. 10) resp. (1. 12)).

Here and in what follows we shall denote by M(£) the mean value of
1

L, i.e we put M(D)=|Z(x)dx for L—{(x). We shall further denote by
i

M(C|B) the conditional mean value of the random variable £ with respect to
the condition B. We shall now prove

LEmmA 1. M(log ¢,) =n—y+o0(1) where y is Euler’s constant.'
PROOF. Let us consider £, =1 +%+ —}—{;—1_2. We have by (1.12)

o

(1.22) M@G)— ﬁ J wte-2n (f (1 T R TH (l—e'”)‘i) du—n.
0

i=1

As g, tends with probability 1 to -4 oc, and as well known,

1
log N=1 -|——2~ [— —y+o(1),
it follows that

(1.22) and (1.23) together prove Lemma I.

1 1t is clear from (1. 12) that M(g,) = -+ oo.
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§ 2. The central limit theorem for Engel's series

In this § we shall need the following

palk) _ { 3 )” -
LEMMA 2. 2k+] =|7] @=12..).
Proor. Taking into account that by virtue of (1. 4)
pn(k) p:r 1(!) '(!—E—l} f+1 Fioo i
Z ZH—I ST and _5_4 for 1=2,
we obfain that

pi(k) _ 3
As Z’k—i—l <_:4,our Lemm

THEOREM 2 (P. LEvY). For any real y we have

Yo
lim P[l’—gq’—fi < y)=—,1—__Je'?dt.
PR ] Vﬂ 1/25’!.'

-

follows. Now we can prove

By other words Jog ;"_—— is in the limit normally distributed for n— oc.
n
PrROOF. Let us put
2.1) X, =log ¢, X, = log qq"l (n=2,3,..)
and
(2'2) y“=!0gq“=xl+x2+“'+xn,
further 1
(2.3) @a(t) = M(eittn) = J ¢it10g9,(@ ¢ x.,
0

To prove Theorem 2 it suffices to show (see e. g. [8]) that

4o
(2.4) lim g, ( . )e“‘“: g2
I'n

=0

for any real ¢. Let us put

41]

ettlogr 1
(2.5) (t)—J dx=i—r.

1

First we shall show that

2.6) BO—vOm01=G+2D(2]  @=23..)
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This can be obtained as follows. We have

2.7) Pu®) =2 pur (DM (e8| g, = 1)
and thus by (1. 3)
[+4] o &
. itlog! tlog 7 [—1 )
(2. 8) (Pn(r) ép»ﬂl)e (;e k(k-—]) »
As
e
lud] E o ; &
g (I—1) I 3 wogy | dx
(2-9) }ée k(k-—.-l) 'ﬁb(f)lé__l 1 -I-k:Zm ]e e'tlog &
k-1
#—1 k I
and as for éxéT and k= 1{-41 we have
?tmg; enﬂogx{ — __ﬂ__ — 2]”
= k—1" 141"

it follows that

2 | = 22,

Thus, taking into account that

2. 11) g1 = 3 pusenert,

it follows from (2.8) and (2.10) that .

@1 pO—vOn0 = G+2) 32

Applying Lemma 2 we obtain (2.6). Let us apply (2.6) for n—r instead
of n and multiply it by ¢ (¢). It follows

Q1) [OR 0¥ OOl =6+200(3]
Adding (2.13) for r=0,1,...,n—m—1 we obtain

(2.10)

3 m

214 &)= 0O gn(0] = (12482 [ ]
Now we have clearly for any fixed value of m
. t n—%k e e
(2.15) hmip(—r) et n — p-or

and
2. 16) nm%( : ]:1
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and therefore
(2.17) lim sup,qn.( ]e'“”“ et

L0

=12 (i]
y

As we may choose the value of m arbitrarily large, we obtain (2. 4). Thus
Theorem 1 is proved.

It can be seen from the proof that the random variables x, behave app-
roximately as if they were independent and distributed according to the
exponential distribution with mean 1. The latter assertion can be expressed

also by saying that —%ﬂ is for 71— o< in the limit uniformly distributed in

W

the interval (0, 1). This result can be deduced also directly from the remark
of P. LEvy mentioned in the introduction, that the random variable
(g.(x)—1)r.(x) is exactly uniformly distributed in the interval (0, 1).

§ 3. The strong law of large numbers for Engel's series

In this § we give a short proof of the following Theorem 3, which has
been announced without proof by E. BOREL [3]. Though Theorem 3 is con-
tained in Theorem 4 (the law of the iterated logarithm), we thought it worth
while to give a direct proof of Theorem 3 because the proof of Theorem 4
is rather complicated.

THEOREM 3. (E. BOREL). For almost all x lim |/q, —e.

PROOF. Let us choose an arbitrary #>0. We start from the formula
(1. 15). We have evidently for v >0

1
=

w

J wledua.
]og[.k--l)—r
Thus if k==e'0+, 7—Iloglog k and n = n,(¢) we obtain

w

(3. 1) W.(h)=e"

1
(n—1)!

< (n 2 1 ] , and vet " is decreasing and <1 for »>1, it follows

o

iy [ eeuzalieg)

£
ni

o

ik

l.,| s
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Thus we obtain

LEMMA 3. There exists for any >0 a number q,(¢) for which
O<q:(e)<1and

(3.2) W.(@19) = (q.(e))" for n=m(e).
Clearly for ¢,(¢) we may take any number satisfying

max (l (1 = %) e“-2) <qle)< 1.

e ?

Similarly we prove

LEMMA 4. To any ¢ (0<e&<1) there exists a number q.(¢) such that
0<q(s)<1 and

(3.3) S, N < gi(e) for n=nue).
As a matter of fact we have by (1. 16) for v >0

logh—t

(3.4) S, (k) = (n——ll)—' [ uledu--e .

0

, ne . ; ,
Choosing -rz-?*, as ve'™" is increasing and <1 for 0 <+ < 1 it follows that

s i -1
S.(e"-9) = 2en ((] _ %) e._e,.-'e] it 1= (),

4

which proves (3. 3).
It follows from Lemma 3 resp. Lemma 4 that the series

=4

(3.5) P(Jq. > e)
=1

resp. the series

(3. 6) - P(/'g. <e)

are convergent for any &> 0. Therefore for every >0 for almost all x the
inequalities

h

3.7 el-t < 1‘; < pl¥e
are valid, except for a finite number of values of n. This proves Theorem 3.
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§ 4. Some inequalities

In what follows ¢, c,, ... denote positive absolute constants.
LEMMA 5.
J‘rﬂ 1 w1 .
(Z 7—) (Jj—1)
= M=i

4. 1) pu(klj) = k=) (a=1)1 for k=j=2.
ProOF. We have

1 o Rt 1 1
— = =
S (% t] oD Gl TS
= 1
T ims S = bl

With respect to (1. 17) this proves Lemma 5.

LEMMA 6. If k=—e"*V" where 0 < x < n'™ we have

ce ® _ e 2

4. 3) e Wa(k) = =

LEMMA 7. If k=e"=V" where 0 < x < n'7, we have

a? at
ce ? L

(4. 4) =Sk ="

PrROOF OF LEMMAS 6 AND 7. We have from (1. 15) resp. (1. 16)

: :
(4. 5) Cam J wledu = W,(k),
log k&
resp. i
1 g

(4. 6) Cy Tﬁ—:l—)"— J u-lerdn = S, (k).

0
From (3.1), (3.4), (4.5) and (4. 6) the assertions of Lemmas 6 and 7 follow
easily taking into account that by the method of Laplace we obtain

1 Fo 1
wlerdu ~ e " 2du
4-7) (n—1)! J 2z l
u:—.r}"‘: @
for n— oo and 0 < x < n'7, further

1. . 1
- e W2 o 1} o~ - I g
(4. 8) T2 J V27x e for x— - cc.

T
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LEmma 8. For |log ?— —n|=|nlogn
, k
(4- 9) Wu(klf) 2 Cr Wn (7) v
| k =
LEmMMA 9. For | IogT —n|<|nlogn
(4.10) Su(k|f) = ¢s Sn (j!f’]

ProOF OF LEMMAS 8 AND 9. By Lemma 5

h ] n-1 =
@1y wapz=Y=D > [Z ] : j“"gx)“" e

s 1)lh_r Ri—1) = (a—1D)! x
k
i 5
Co ! pdie
= w-tedu
(n—1)1 J
:og-;f—

and thus by (3. 1) the assertion of Lemma 9 follows. Similarly we obtain

log X
¥

4.12) Su(kl)) = [ u-tedu,
0

h (ﬂ )
from which by (3.4) the assertion of Lemma 9 follows.

The asymptotic behaviour of p.(k) resp. p.(k|j) has been considered
more thoroughly by A. BEKEssy [9]. He proved e. g. that

n—1) (log k)"
(.16} Py~ F(2— !ogk) K(n—1)!
for 2nloglk =g < 1. For our purposes, however, the estimates given in this

§ are sufficient.

§ 5. The law of the iterated logarithm

Now we are in the position to prove

THEOREM 4. (P. LEVY). For almost all x (0 <x < 1) we have

]0g Q};'_n
limsup ——=—=1— =1
@-1) S & V2nloglogn
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and
(5.2) lim inf 28 —2__
ws+o |20 loglog n
Proor. We prove first that for almost all x
log g.—n  _
i —— = 1
®-3) hplilép V2n log log n
and
log g,—n
(5.4) ;gminf% =—1.
n—>tm I 2n 10g log n
For this purpose it suffices to show that the inequalities
(5. 5) L L SO ERY
['2n log log n
resp.
(5. 6) L S (R S
['2nloglogn

are satisfied for almost all x for a finite number of values of n only, for
any o >0. The proof of this given below follows essentially that of the paper
[10] for the ordinary law of the iterated logarithm.” Let us put m, —=[(1 4 &)"]

where 0 < ¢ < 2. It follows by Lemmas 6 and 7 that the series

2
e 1oggm —m. '

(5.7) LP( L >1+’;)

=} 2m,loglogm, ;
resp.

25 log g, —m.,
(5.8) 2 P( Ll o s, <—1—n]

=t \|2m,loglogm., :

are convergent if » > 0.
We shall prove in detail only the assertion concerning the inequality
(5.5) as the proof for (5.6) is exactly the same. Let us denote by A.(d) the

event -—ELL >1--d. Let us denote for any event A by A the event
[2kloglogk
contrary to A; put B — A, (), further

B =4, (0)... A, 1(9)- A(d) for k>m,.

5 As, however, we do not consider here for an arbitrary function ¢ (n) whether the in-

equality logg, —n > | ng(n) is satisfied for almost all x for a finite or an infinite number
of values of n, but restrict ourselves to the case ¢(n)=2(1+d)loglogn, we may take

i

m, —[(1 + ¢&)"] instead of m, —[etoz#] needed in the general case.
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(Here and in what follows the product of events denotes the joint occurrence
of the events in question.) The events BY” (k= m,) clearly exclude each other,
as B” means that k is the first index =m, for which A.(0) takes place. If
the sum of events means that at least one of the events occurs, then we have
evidently for any I=m, , I

> B = > A(9).

LET k=my,

[f our assertion concerning (5.5) would not hold, i.e. if (5.5) would be
satisfied for an infinity of values of n for all x belonging to a set having
positive measure, we could find a constant ¢ >0 and for any positive integer
M an other integer N >M such that

-1
P( > A;..(r)‘)] =c>0
Jo=mi g b,
(c does not depend on M). Let us denote for m.=k<m.. by D, the
event that
10g g, ,— M2 = log g —k.

Clearly the joint occurrence of the events Bi” and D, . implies the occurrence

of A”':i+2(,i) if (1 L ()) > (l -+ f,g) (1 -+ {.')

fO<d<1and we chooseO<e<i d

5 and 0 <y < 3 then this condition
is clearly satisfied and we obtain

iy -1 wpap-1

(3.9 PAs ()= X PD.L.B")= 2 PB)P(D..lB).

1:—mﬂ 1‘—-m“
But, as ¢, is a Markov chain,
(5. 10) P(D.,.|B") = Min P(D...|q.=J))

logj -~ I+{1+d) ) 2k loglog &

and by Lemma 8

(5.11) P(D..i gi=J) = ¢ Wi, ,-1(e""*").
Thus
(5.12) P(D,:B)=c,>0
and therefore by (5.9)
N-1 my-1 -1 Z
G.13) X P(A.0)za > PE)—aP( S A©0))
ne=2r K=y k= gy /

It follows that for any M there can be found a number N such that

.\'_—11
(5.14) 2 P(A,, () =cen>0.
E=hT
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But this is a contradiction because the series (5.7) is convergent. Thus our
assertion that for almost all x (5.5) is satisfied only for a finite number of
values of n is proved.
The corresponding statement for (5.6) is proved similarly. The only
difference consists in that we need here Lemma 9 instead of Lemma 8.
Now we turn to the proof of the other part of the theorem, i.e. we
prove that

(5. 15) L SEVRR
[2nloglogn

resp.

(5. 16) _loggn—n 144

['2n log log n

are both satisfied for any infinity of values of n, for almost all x, if >0,
which implies
(5. 17) lim 8P

wro |20 log log n
resp.
(5. 18) T s O

> | 2nloglog n
for almost all x.

We choose a g >1, the value of which will be fixed later, and put

m, = [g"]. We denote by C,(d) the event that the inequality

(5.19) T B
2nloglogn

does not hold. Let us consider the probability

6.20) P(I] T®) =P 1 P(C..® | 1] T

If we can prove that this probability may be made arbitrarily small for any
M by choosing N sufficiently large, this implies that the measure of the set
of those x for which

log g, —m,
(5.21) SR

<l—d for n=M,

['2m,.1log log m.,

is equal to O for any M.
As we already know that the set of those x for which

]0 Na._nlu
b, <—1—0

['2m, log log m,
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for n=M has the measure 0, it follows that the set for which
lOg q“:ﬁ_mu
2m, log log m,

for n=M has also the measure 0, and this is what we wanf to prove.
Now we have clearly, as ¢, is a Markov chain,

<l—4d

6.2 P(Cor )| 1] Co®) =,

where

(5.23) Lt = Max P(Co,.. (®|qu,=J.)-
e Eda™ M “1-8

) } 2m,, loglog m,,
We now fry to obtain an estimate from above for 4,.,. We have clearly,
putting
(5.24) ke, = g1t (-0 V2w, Toglogmy.y )
(5 25) P(Cn11r+1 (d) q:n" =J"n) = u,m”,:_l—m"(kﬁ |jn)-

We shall give an estimate from below for the right hand side of (5.25).
By Lemma 8 we obtain, putting «, = m,.,—m.

(5.26) Min W, (k|j) =0 w( b ____ J

log j,-m,, e““i,‘(l‘-'é)l"jm”jgg log wi,

e S S B
V2m,, log log m,,

-1-d

If g is sufficiently large, then
]ng” _m” ‘!— (l + d) Fzmn lOg log m, < T + [I e _'(2)—' Flzrn log log a
and in this case

(5.27) b= 1—a W, [e‘“""(
As it follows by some easy calculation from Lemma 6 that the series
5y, e - e
=l *
is divergent, our assertion that
5 3
lim P( fre. (d)J =
N> k=M

follows. This proves (5.17); clearly (5. 18) can be proved in the same way.

Thus Theorem 4 is completely proved.
We do not consider here the obvious generalizations of Theorem 4,
though they may be freated in the same way (see footnote °).

o
.

i %) ¥2r,, Tog log J-HJ
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§ 6. Sylvester’s series

In this § we consider Sylvester’s series (Engel’s series of the second
kind) for a real number x (0 <x<1)
1

(6.1) X= Q,+Q+ +Q+

We investigate some metrical properties of the denominators Q.= Q.(x).
We have clearly

(6.2) Q= Q.(Q.—1)+1
and
6.3) P(Qi=ks s Qu=k) = 1y

provided that k=2 and ka=k(h—1)+1 (=1,2,...,n—1). Thus if
these inequalities are satisfied,
P(Qn = k;i | Q] — k1, Sy Qu»l == ku—]) ==
(6.4) i (ki i—1)
— P(Qu — ki-a| Qn-l B ku—l) e W—l)

Thus the sequence Q,(x) is a homogeneous Markov chain, whose transition
probabilities are given by

—1
6.5) 15— P(Qu— k| Qu1 =) = 5=
if j=2 and k=j(j—1)-1.
It follows that putting P,(k) =P(Q.=%k) we have the recursion rela-
tions

.6) Pi— > M=Da.p

Therefore

©.7) éflk(i) =§RH ) :.-:,,;;-1 ig_’(éf——ll)) = ;ﬁjgg“_l
and as ;(7:%)_4-_1 = § for j=2, it follows

©9 2ol bl

Therefore as P, (k)— I , we obtain

k(e—1)
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Lemma 10.

g"‘k—é(ﬂ'

;-,-

Let us put now

" er-
(6.9)  @,(t)— M(e*'ee¢) and q.b,.(r):M(e”'”*‘f._n‘--u"-l) (n=2,3,...).
By (6.3), putting

f|02‘—

(6.10) pi=_>  za=r/0—D
we have _

eirlogﬁ:
6.11) D) = 2 =y Yrar -
We obtain easily, similarly as in § 2,

aHOgT X l 1 t
(6.]2) ‘?-,L’,«(f)—-i = C1_(_;_| |),

5 itlog.e

thus, putting again v(f) = } dx, we have by Lemma 10

6.13) |2 O— v P s Z6| 2] 0410

Now we can apply the same method as in the proof of Theorem 2, and
obtain thus

THEOREM 5.
Q. ' y
log ———=——n -
lim P( Qe Qo <y): ’ Je-_;dzf
e 1 1 / l 2T 4
Jor any real y, i. e. logb-QT is in the limit normally distributed.’
1 n=1

The result which we obtained is a consequence cof the facts which have
been proved implicitly above, that the random variables X, = log Q,,

n

Q.

“ Theorem 5 implies that ] — " tends in measure to e. More is true, namely

Ql Q}z 1

n

that l_f Q"_ tend also almost everywhere to e. The proof will be published elsewhere.
]' L Jl—l




26 P. ERDGOS, A, RENYI AND P. SZUSZ

X, =—log -QQ,— (n=2,3,...) are in a certain sense almost independent and

u-1
the distribution of X, tends for 7n—oc to the exponential distribution with
mean 1. The latter fact can be also deduced from the remark that Q.(Q.—1)R,
is for every n exactly uniformly distributed in the interval (0, 1).
As regards @, itself, we can prove the following

THEOREM 6.
lim log Q. (x)
=00 2
exists and is finite and positive for almost all x.

ProoOF. We have

log Q,, (x) Z"‘ X

and as

M(X|)=cs (=123,
it follows by the theorem of B. Levi [11], that the limit in question exists
for almost all x. It is easy to see that the limit is always positive. As a
matter of fact, if the sequence S, is defined by §; =2, S..; = S.(S,—1)+1,
then (as has been shown already by SYLVESTER) S, =22""., But Q.(x)=S.

and therefore gQ" = I0g2 (=1, 2. .

§ 7. Some number-theoretical questions

Let @ and & be positive integers, 0«::%-«:1. It is well-known that %

can be represented in the form
a 1 1 1
. N S L O, SRS, .
(7 ]) b S] +Sg + 1 S" ]
where §, < S,<---< S, are positive integers. Such representations of rational

numbers have been considered already by the Egyptians, more than 3500
years ago. Denote by f(a, b) the smallest value of n, i.e. the length of the

shortest representation of %
1

et
S]_

in the form (7.1). If we choose S, to be the

smallest integer with , we have

(1.2) e
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with @' =a8—b <a. Thus f(a, b)) =a. P. ERDOs proved [12] that

Cy; 10g b
1.3 fa,p)< gl

but very likely (7. 3) can be very much improved; perhaps f(a, b) < ¢, loglogb.
More can not be true, as it is known [8] that f(b—1, b) > log log b—1.

It is known [13] that for infinitely many &-s f(3, b)==3. STRrAUSS and
ERrDOS conjectured that f(4,5) <4 and SCHINZEL and SIERPINSKI conjectured
that f(a, n)=3 for all n > n,(a).

Consider now various special representations of the form (7.1). First

Denote by E.(a,b) the number of

of all consider Sylvester’s series of %.
terms occurring in this series. From (7. 2) it follows that E.(a, 6)=a and it
is easy to see that this is best possible, since E.(a,a'--1)=a. We know
of no good estimation of E,(a,b) in terms of &; the ftrivial 2stimation
E.(a, b) < b is no doubt very far from being best possible.

We remark that E.(a, b)= f(a b) e. g 290 ! +_;-:%_|.._;_+,“13_,
i.e f(9,20)=2 but E,(9, 20)
g Qa

In §6 we proved that
Q. is the n-th denominator of the Sylvester’s series of x. It follows from the
divergence of the harmonic series that no function F(x,n) can be given so

that for any representation x = ; +; . + +---, where §, is a posi-
1

tends for almost all x to a limit, where

tive integer and S, < S,.1, we should have Su‘—jF(x, n). But it seemed pos-
sible that for any such representation

(1.4) S.=Qu(x)

infinitely often. Now we show that (7.4) is not always true. Let n, tend to
~+ o< sufficiently fast, and put
—
ZZ (2&; 2_nk1—|——l)'
t2_1ﬂ+_2ﬁ]_ S}. + .- +Sm; be the Sylvester’s series of
T

2,Jr

A simple computation shows that 4 >2 if n,>1 and if

201> (S, ) then ZZ o is the Sylvester’s series of x and clearly here

Q.(x) < S. for all sufflclent]y large n. It seems that (7.4) fails for almost
all x.
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It follows from the fact that a given x can not be approximated arbit-
rarily well by rational numbers with denominator = y that there exists for
every x a function G(x, n) so that if x:Zé, then S, < G(x, n) infinitely

k=1 Q&
often. It is easy to find such a function G(x, n) for almost all x; e. g. for
almost all x G(x, n)=(3+¢)>" has the mentioned property if ¢ >0, but it
seems difficult to give a good estimation for the smallest such function.
Thus in particular we could not decide whether for almost all x there exists

. o 1 s
a series x— > < (Su positive integer, S, <S,:) so that
=1
log S,

Similar algorithms like that leading to Sylvester’s series can be defined
by replacing the harmonic series by some other series of positive terms (see
e. g. [14]). For these algorithms similar questions can be asked.

Now we consider Engel's series of the first kind of rational numbers,
that is the representation

a 1 1 1
b= T ee T Tag
Put E,(a, b)=n. We have no non-trivial estimation of E,(a, b). Clearly ¢, =&
and the same value of g; can not occur too often; in this way one can
obtain a very poor upper bound for E (a, b). Here too it would be interest-
ing to estimate E,(a,b) in terms of both a and b. E,(a, b) =a can be proved

as follows:

= i— @ where ¢ =aq,—b<a
b ¢ bg e :
As fl(%J=%, it is clear that E (a, b) =a.

Oftel’] EI(G, b) :E_)(a, b), €. g- 51(3, 4): .E-g(3, 4) :-2 bl]t E] (2], 32)=3,
E,(21,32)=4 and E(5,6)=3, E,(5,6)=2; thus in general there is no
simple inequality between the two numbers.

Denote by D(a, b) the smallest n for which % has a representation
a 1,1 1
(7.5) 5-dTdaT =t Tlandl "

where d,,d;, ..., d, are integers d, =2 (n=1,2,...). Often D(aq, b) < E,(a, b).
If x is irrational and
(7.6) x— !

Wil tly

M

i
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where d, is an integer d, =2 (n=1,2,...), it is easy to give a function
H(x, n) so that for almost all x d,d,...d, < H(x, n) for all n> n,(x), but it
seems hard to give a good estimation for a function H(a) so that for aimost
all x and n >n, we have d,d,...d, < H(n).

It is not difficult to see that every x for which
can be written in the form (7.6) with 2=d,=k--1.

As a matter of fact, if %§x<r—1_—l- where » is an integer 2 =v=¢,
then let us put di(x)=r-+11if »>2 or if »=2 and -‘,l}jgx< %—'_EII_{ and
di(x)=2 if —]-—I—L'éxél. Then putting r,(x) =d,(x)x—1, we have always

=x=1 (k=3 integer)

| =

—}{— =rn(x)=1; we define d,(x) =d,(r,(x)) and r,(x) = d,(x)r,(x)—1 and so on.

Thus we obtain the representation
1 1 1
4 Td@am Tt A dam T
where 2=d,(X) =k 1.
A simple modification of the above argument shows that every x
(0<x<1) can be written in the form

4
dd,...d,

(1.7) =

15

(7. 8) = with 2=d,=4 for n=2

I

I

As a matter of fact, if : =R :—]—I_ where » =2 s an integer, then

two cases are possible: either » =3, then as shown above, x has a repre-
sentation (7.8) with 2=d,=4, for n=1,2,...; on the other hand if » >3

then %<(2r—2)x—1§11 and thus x has the representation (7.8) with

2=d,=4 (n=2,3,..) and d,=2r—2.

If we require in (7.6) d,=2 or d,=3 for n=1,2,... it is easy to
see that the measure of the set of those numbers for which such a repre-
sentation exists, is 0.

Let us consider namely all numbers of the form (7.5) where d,=2 or
3 (k=1,2,...). As for each x which has the representation (7.6) with
d,=2or 3 (n=1,2,...) where d,,d,,...,dv are fixed, is contained in an
interval of length (2d,...dy)"', the set of all numbers x which have such
a representation is covered by a set of intervals, the sum of length of which

N
does not exceed té L%J . Thus this set has the measure 0.
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It would be interesting to determine the greatest value of 2 such that
for almost all x and any representation of x in the form (7.8), putting

D.=d\d,...d, we have li_m_l,"D_nz B8, A modification of the above argument

=@

shows that there exists such a §>2; more exactly we shall show that we
may take $-—2°.3"", This can be shown as follows. The set of those
numbers x, which have a representation of the form (7. 8) where d, ..., dx~:

2
are fixed, is contained in an interval of the length TN Thus all those
1% == N+

numbers x, which have a representation of the above form such that d,=j
and between the numbers d,, ..., dy,1 not more than c/V are different from 2,
where ¢ <1, are covered by a set of intervals with total length

o= 2 (G 6]

Now it is easy to show (see e. g. [15], p. 405) that if O<p<1, ¢g=1—p

and 0 <& <p, then
eN

(N) porze P05
k=(p-eN
1
13
¥
L‘\*(i.] é {@?] ._.2_.:'
13) = \87924) '3

Thus the set of those numbers x which have a representation (7.8)

1

Thus it follows that for ¢ =

in which putting D,—=d,d,...d,, we have lim /D, < 32" has measure O.

N—+ @

It follows that for almost all x lim}'D, =2"#3"%, which was to be proved.

o

Now we construct an x (0 < x <1) for which

- 1
(7 9) X= Z.Dn ’

R=1

where D, =2 is an integer, D,/D,.1 and D, =D; i.e. (1.9) is the Engel’s
series and at the same time the Sylvester’s series of x and is such that for
every k

(7. 10) Min [\xFE§)=x~ZE.
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From this it will be easy to deduce that if

1

M

(1.11) Sy

[+

# "

is any other representation of x such that the S, are integers, S,.1=S,, then
S, =D, infinitely often (we showed previously that this is not true for all x).
We construct the D, inductively. Put D, =2, let D,= kD, be so large

1 1 .
that 5—}——— is much less than every 711'+_£17_ o 2 with a== D, [,,much less”
1 1

D, D
means L —}-Er < i +L] then choose D,=-1D, so large that L%-L + —1—
D1 D-g [/ b ’ ! ? 2 1 D2 D3

; I 1 ] 1 1 .
is much less than every ?+F+?>ﬁ+ﬁﬂ with a==D, or b= D,.

This construction clearly gives an x with the required properties.

Let

o 1

7. ] = S-' - =
(Lle) *= <,

be Sylvester’s series of x and (7.11) another representation of x. Is it true
that for almost all x (7.10) holds for infinitely many £? (Our construction
gives only a set of measure O of such numbers x for which this is true.)
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