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On some combinatorical problems .

In memoriam Tibor Szele .

By P. ERDŐS and A . RÉNYI in Budapest .

Introduction.

Let Ck (n) denote the least number of such combinations of order k of
n different elements, that any two elements are contained in at least on e
combination (k, n = 2, 3, . . .) . Such a system of combinations wil lbecalled

a (k, n)-system. Clearly we have ( k ) Ck(n) ()' as there are 12 I pairs

in any combination of order k and each of the 2) possible pairs must be

contained in one of the Ck (n) combinations. Thus we have

(1) Ck(n) —
n — 1 )
k(k—1 )

If for some values of k and n there is equality in (1), we say that an op-
timal (k, n)-system exists . It is well-known, that if k	 P± 1 and n — P '• +
±Pi '± ; P±1 where P is a power of a prime and r 1 an arbitrary
integer, there exists an optimal (k, n)-system . This has been proved — accord -
ing to our knowledge — first by TH. SKOLEM (see [1]) . There exist also optima l
(P, P') systems, if P is a power of a prime and r 1 . These facts are nowadays
utilized in constructing balanced incomplete block designs (see [2]) . An op-
timal (k, n)-system is clearly a balanced incomplete block design of n varieties

into
n(n — 1) blocks of k plots each, such that every variety occurs wit h
k(k—1 )

every other variety exactly once in the same block . It seems that up to no w
interest was focused on optimal (k, n)-systems and the asymptotic behaviou r
of Ck (n) for n >

	

has not been investigated . In § 1 . of the present pape r
we prove that if k = P is fixed, where P is a power of a prime, we have

G(n)

	

1	
(2) hm	 =	

n(n—1)

	

k(k—1) ,
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i . e . there exists a sequence of asymptotically optimal (k, n)-systems for eac h
fixed k= P where P is a prime power. (2) is valid also for k= P± I where
P is a prime power . The proof is analogous to that given in the present
paper for k= P, only Lemma 1 is used instead of Lemma 3 . It can be proved.

by the same method that the limit lim	
Ck (n)	 = y,, exists for any k> 1 ,

n ,n n(n—1 )

but we do not know the value of y k for other values of k than mentioned
above. However it can be proved that

(3)

	

lim
co

k(k—1) 1 rn
n(n

(n
i)

= 1
I

i . e . that lim k(k—1) yk = 1 . These results together with a simple but ingen-
k- C)

ious method of proof, which has been formulated and used by T . SZEL E

in his thesis [3], are applied in § 2 . to prove a conjecture which has
been recently proposed by the second named author [4] . Let Dk (n) denote
the length of the shortest sequence formed from the digits 1, 2, . . ., n in
which any two digits i and j (1 i j n) are at least once to be foun d
in such position, that they are separated by at most k numbers . It has been
proved, in [4], that

	 1	 ~ lim
Dk(n)

2k—2 — ,
hm

n -+

D k (n)

	

1

n = — k

and it has been conjectured, that

D,(n)
n''

exists for k = 2, 3, . . . ; however the existence of (4) is proved only for k= 2
and k= 3, the proof for k= 3 being due to N. G . DE BRUIJN ; in these two

cases the limit is 2k 1 2 . We prove that the limit (4) exists for all k

	

2 ;

however our method does not lead to the determination of the value o f

§ 1 . The asymptotic behaviour of C, (n).

Let us put

cl, (n )(5)

We shall prove

Theorem 1.

	 k(k—1)Cr(n)
n(n —1 )

lim ch (n) — 1
n~ a

where P is a power of a prime .

for k = P
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The proof requires a number of lemmas, some of which are well-know n
and are stated only for convenience .

Lemma 1. (SKOLEM) : If k = P+ 1, where P is a power of a prime
and n	 	 =, • • ; P 1, where r is arbitrary, we have ck (n) = 1 ,
i . e. there exists an optimal (k, n)-system ; this system can be chosen in such

For the proof see [1] or [2] p. 109—111 .

Lemma 2 .
ck (n) - c,,(q)c,(n)

	

(k C q K n) .

PROOF OF LEMMA 2. Let us form from the numbers 1, 2, . . ., n a (q, n) -
system consisting of C,(n) combinations of order q . From each such com-
bination let us form a (k, q) system consisting of C(q) combinations of
order k. Thus a (k, n) system is obtained . Thus we have C (n)

	

Ck (q) C,(n) .
k(k—1 )

Multiplying this inequality by
n(n—1) we obtain the assertion of Lemma 2 .

Lemma 3 . If P is a power of a prune, and r 1, we have cp (P ' ) — 1 ,
i . e . there exists an optimal (P, P ' )-system.

Lemma 3 can be deduced from Lemma 1 (see [2] p . 112) . Let us con-
sider an optimal (k, n)-system, for k	 P+ 1, n = P' ±P '`1 + • • • ± P± 1 ,
which exists according to Lemma 1, and which contains as a subsystem an

optimal (k, k- 1	 )-system . Let us omit from the given (k, n)-system the

n— 1mentioned (k, k—
1
	 ) -system ; it is easy to see that any one of the remainin g

combinations contains exactly one element of the omitted subsystem . Omitting
the mentioned element from each of these combinations, we obtain an optima l

(k—1, n— krt — .
1 )(k-system i . e . an optimal (P, P')- system, as k—1 =P an d

n— 1
n—

	

--P'
k 1
Optimal (P, P ')-systems can also be constructed directly, without using

optimal (P-}- 1, P ' P'` 1 ± . . . ± P+ 1)-systems . We give here only the con-
struction of optimal (p, p')-systems if p is prime . Let us represent the p'
elements by all pairs (i, j) of residue classes mod p (i, j = 0, 1, . . .,p—1).
Let us consider to any two residues h and k mod p the combination s

:(0,h),(1,h+k), . . .,(r,h=, rk), . . .,(p—1,h=(p—1)k) .
Thus we obtain p" combinations ; let us consider besides these for any residue

h mod p the combination
C,_ : (h, 0), (h, 1), . . ., (h, p—1) .

a way that it contains a subsystem which is an optimal (k, n-1 system .
1. k—1
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Thus we obtain altogether p' +1) combinations of order p, which together for m
an optimal (p, p')-system. As a matter of fact if (x, y) and (u, v) are two
pairs of residue classes modp then if x 	 u these two pairs of residue classe s
are both contained in C:, ; if x =p- u the two pairs of residue classes are bot h
contained in the combinations Cm, ., where h and k are determined by th e
congruences h + xk — y (mod p), h + u k — (mod p), which have a solution

owing to x	 Iu (mod p) namely k	 y—	
r

(mod p) and h = xz —yu
(mod p) .

x—u

	

x— u
In what follows P shall denote a fixed number which is the power o f

a prime ; a,, a.,, . . . will denote positive constants, depending eventually o n
P ors but not on n .

Lemma 4. If 0 < 6 < 4
we have

	

Ck (n)

	

c,; (N) (1 +86)
if

N(1-6)n-N (N � 2) .

PROOF . We have Ck(n) CA IN) for n N and thus

cA(n)

	

n(n—1) C (N)

	

(I -20= c" (AO

and if 0 < 6 < 4 we have (1	 1_ 202

	

1 +8e which proves Lemma 4 .

Lemma 5. (INGHAM) : If p,, denotes the sequence of primes, (n = 1, 2, . . .) ,
we have

	

11't,
p„-I —p • . < p,, for p„ > a, , (See OD .

Lemma 6 . If pA denotes the k-th prime number and A ., > A l a,
we have

Max
pf :+i

	

1

	

1
i.;

A i

Lemma 6. follows easily from Lemma 5 .

Lemma 7. There exists to any 6 with 0 < 6 <
4 arbitrary large num -

bers B for which
cp(n) 1 + 326 for B n 2 B-' .

PROOF . Let 0 < 6 < 4 and an integer a3 be given. Let us choose a n

integer r such that A -13' a;; . By Lemma 3 cp(A) = 1 and thus by Lemma 4
cp(n) 1 +8E for A(1—6) n A . If a; is sufficiently large, there is at
least one prime in the interval (A(1 — e), A) . Let q l < q, < • • < q,» denote th e
primes in the interval (A(1—0,A) . It follows from Lemmas 2 and 3 tha t
if m is any fixed integer, m 2, we have cp(q " ) - 1 + 86 as cp (q,) -1 + &

D 26
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(i	 1, 2, . . .,$) ; thus by Lemma 4

	

cp(n) (l +80)°

	

1 ±32' for q'" (I —r)

	

n < q " .

Now, if we choose m in such a way that the intervals (q " (1—0), q ;" ) are not
disjoint, i .e .

	

(1—e) < q ;" , it follows, that cp(n)

	

1 + 32s for q ;Z ( I —e)

n

	

qs" . Now

	

<

	

(i= 1, . . ., s) is satisfied if q '
+'

< ( 1

(1

	

i = s). As by Lemma 6 . q"-1 < 1	 	 I	 1	
16 if a 3 is sufficiently

( (

	

) )
1 y

large, this is true if 1 + (A(I

	

f)) , lU < (
	 1 g)

	

and thus if a 3 is sufficiently

large, this is true if m < A 14 . Thus if a; = a 3 (E) is sufficiently large, we hav e
c,,:(n) 1 +32a for (A (1—E) {-n (A—A l' '1b)"Now the intervals.
[(A(1—0+A'1 :'G')"' (A—A""'")'"] are not disjoint, if m (log A)`', if a 3 is suffi-
ciently large . Thus it follows that

cp(n)

	

1 +32e for (A(1—r)+A"'16)''Og )= n

	

(A—A""1,á) :1i 4

and thus a fortiori for e2<OgA''— n

	

As the interval (e 2 (1Og`° 3, eA' ') cont-
ains an interval (B, 2B 2), provided that a;; is sufficiently large, Lemma 7 is .
proved .

	

}
Lemma 8. If cp(n) a for B n 2B 2 we have cp(n) a (1 -~-	 24	 I

B ;16 '

for Bn<2B4 if B>a 4 .

PROOF . Let -r,,

	

. . ., ;T, denote the primes in the interval (B, 2B2) „

then by Lemma 2 and 3 cp(.z') cp(sa,) a. By Lemma 6 we have

	

;r- 1

	

1	 ~	 	 3	
, r<

	

( I +B1, ;

	

+B:16

	

if B= a,

and thus we have

(
16

	

f
B'

It follows by Lemma 4 . that c,~(n)

	

a (
1 + 8;4 for

I

As

1 1— B 1,; I = (B B:, '")2 (1— 83; ~

and

	

`
rt = (2 B' —2 B” ) 2 2 B4

if a is sufficiently large, Lemma 8 is proved .
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Now we are in position to prove Theorem 1 . It follows from Lemma 7

that for any (OK

	

4 ) we can find a number B, which can be chose n

greater than an arbitrary given number, such that cp(n)

	

I+ 32F• for
B = n 2B' . It follows by Lemma 8 that

cp(n) (1 + 32E) ]J (1 -}	 24.4 }

	

for any n B.
J

As
f

	

24 1 -}
:=o

	

B 0.-

	

B; :i '

it follows that

(6) lim cp(n) �_ (1 -}-320 (1 ± B5,,, )

As F > 0 can be chosen arbitrarily small and B arbitrarily large, (I) and (6 )
implies

lim cp(n) = 1 .
_.ro

Thus Theorem 1 is proved .
Now let k denote an arbitrary number and P the greatest prime powe r

k. Clearly we have Ck (n) Cp(n) as any (P, n)-system can be transformed
into a (k, n) system, by adding arbitrary k—P elements to each combinatio n
of the given (P, n)-system. Thus it follows from Lemma 3 that if k is arbitrary

k(k—1 )
lim c,; (n)	 	 P(1,—I)

where P is the greatest prime power

	

k. As P > k—k1 is for k - a l i t
follows that

lirn ck (n)

	

7- -
a,

and thus

(7) lim (lim c,; (n)) = 1 .
1,-cc n—,co

It is not difficult to prove by the same method as applied in provin g
Theorem 1 that lim ch (n) exists for every k, and thus lim can be replace d

— a

by lim in (7) .

§ 2. Application of a lemma of T . Szele .

In his paper [3] SZELE has used the following simple but often very usefu l

Lemma 9. If a,, is a sequence of real numbers, which is „almost mono -
tonically decreasing”, i. e . If a n a,,, (1 + ) for any > 0 and any m m„ (E) ,
if n n~(E, m), further a„ is bounded from below, then Ern = a exist .
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Lemma 9 may be proved as follows . It follows from our supposition
that for any > 0 and m m,;(a) we have

(8 )

and thus

(9)
s?.—im

	

,n~ m

as a > 0 is arbitrary, (9) implies that lira a„ exists .

Now let Dk (n) denote the length of the shortest sequence, consistin g
of the digits 1, 2, . . ., n, which has the property that any two digits i and j
(1 j n) occur somewhere in the sequence in such a position that the y
are separated by not more than k elements of the sequence . We may restat e
the definition of Dk (n) in the language of the theory of graphs . Dk (n) is the
length of the shortest directed path in the complete graph of n points, which
has the property that from any point of the graph we may reach any othe r
point in not more than k+ 1 steps, by going along the path always accord -
ing to the given direction or always in the opposite direction . Then we have
clearly

(10)

and thus

(11 )

Thus

D k (n)

	

C. (n)Dk (m)

	

(k < m < n)

Dk(n) Dk(m)
c,,, (n)

	

m
n m

	

m— 1

(12)
Dk(n) Dk (m) m

	

2au
( 1

if m=a,
n 2 m" m5'l Em— 1

and n no(a, m),

	

i . e.

Dk(n)

	

(1 +E) Dk (m)
n'

	

m

if m m 0 (a) and n no(a, m) . Applying the Lemma of SZELE this implies
D,;: (n)

that lim	 exists .
~0) n -
It should be mentioned that the authors of the present paper hav e

applied the lemma of SZELE with success to other combinatorical and number -
theoretical questions too .

lim a„

	

a,,,(1 + a)

lim

	

(1 + a) lim a, n ;

(13)
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