MATHEMATICS

ON THE LAW OF THE ITERATED LOGARITHM. I
BY

P. ERDOS anxp 1. 8. GAL

{Communicated by Prof, J. F. oksma at the meeting of October 30. 1934)

3. The lower estimate in the law of the iterated logarithm
From now on let n,<n,<...<n,<.. be a fixed lacunary sequence
satisfying n,.,/n, = ¢>1: vr=1,2,3, ... For the sake of simplicity let
for N = N,
p(N)=|Nloglog N
and for W =0 N =1
M4+N
F(M N;z)=| ¥ exp2min,z|.
v=Af+1
For convenience's sake we introduce also F(M, 0;x)=0 for M = 0.
We want to prove that
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almost everywhere. Obviously it will be sufficient to prove the following:
given arbitrarily small numbers e>0 and 5>0
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for every x: 0 << & << 1 except possibly a set of measure at most ». Finally
it is also clear that this second statement is a consequence of the following
third one:

Lemma 9. Let e>0. =0 be arbitrarily small and let the positive
integer N be arbitrarily large. Then there exists a finite sequence of integers
N<N;<N,<...< Ny such that

=1—¢

. IO, Ny )
maximum -
1=k p(Ny)
for every x; 0 < & < 1 except possibly a set of measure at most 1.
In the proof of this lemma we shall use the following trivial result:

Lemma 10. Let I,. 1, .... I, and Jy, J,. ..., J, be arbitrary intervals
on the real line. Then the intersection (I;+Iy+...+~1,) N (Jy+Jo+ ... =J,)
consists of intervals the number of whiech is less than m+n.

Now let ¢>0 be given and let @ = ay(e). # = 1 be arbitrary integers
the exact value of which will be determined at the end of the following
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proof. At present the condition a = a,(e) assures only that Lemma 8 can
be applied to any of the sums
(27) Fo(x) = F(a" + a**' — ... + a***=1, a'*F; z)
where k=1. 2, 3. ....
For the sake of simplicity let y,=v(e""*). and let I denote the interval
0 <o < 1. We define the set
1 )
E, = ?,1.|.1-EI; Fy(x) = (1-%) ny
and in general
(28) By = jalwel—(By+ Byt o+ Euy); Fofa) > (1-5) !
for k=1, 2, 3, ... (E, denotes the empty set). Our object is to obtain an
upper estimate for the measure
Wl —(By+Ey+ ...+ E)).
To this end we consider E.(k=1, 2. 3, ...) and estimate u(E,;) from below,
Let us introduce the notation
m = n(a* + a**! - .., + a**¥)
where n,=n(1), n,=n(2). ... denotes the given lacunary sequence. Since

Fi(x)® is a trigonometric polynomial of degree 2m, the set

:::rj;rsl; Fyx)< (1 —%) rp,::

consists of at most 4m, intervals. In particular I — E,| consists of g, intervals
where g,<4m,. In general it is true that the set I —(E,+Ey+ ...+ E;)
consists of g, intervals where

Op < 4(my -+ Mg+ ... ) < 4km.
For, according to the definition of E,, E,. ..., B, in (28) we have
I—-(E\+Ey+...+E,) =
= ([~ (By+ By + .. + B)] 0 falaels Fy@)<(1-3) !

Hence using Lemma 10 we obtain o, <g;_,—4m,. which proves the above

estimate.
Now let ¢..,(k = 1) be the union of those intervals of

I1-(E\+E,+...-E)
the length of which is less than 6, = m;!a~“***V2 Then we have
(29) i) < 01 6 <4bmy 8, = 4 kg~ wtk1E,
The set I —(E,+E,+~...+E,)—e.,, consists of intervals the length of

which is at least

51;3* Ifﬂ(]. Lot Lgett L _;_au+k} I-“u+k+1_
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Hence the condition §—x > 1/n, YN of Lemma 8 is satisfied for every
interval of the set I —(E,+E,~...+E;)—e.,. Since a = a,(e) we may
use Lemma 8 in order to estimate u(F, ,):

pd—(En+Eyt ...+ Br)—ersq]

w(ly,) = (u+k+1)loga
- B —(E+Es ...+ )
= erb ) oga — p(€ps1)-

According to Lemma 8 we also have

1 ()

pei (El) = (u+l)loga = (u+1) ll:lgﬂ'

From these last inequalities we obtain by induction on k;
L

1 k
M[I_(El + EB +Ek)] 1:,[1( {u—i—v)loga) +v§2.|u'(ev)'
By (29),

k [o~]
Zﬂ((f') < 46&"""’2 2 ka_-tk+1);'2
=2 k=1

=0 a2,
Finally it follows that

pH—(E,+E,+... + E)] <
k 2
1 (- ) + 9

Let us introduce the notation
No=a*+a*t +. ... +a*tE (k= 0)
and let us define the sets B, (b = 1) as
(30) E; = {z|xzsl; F(0, Ny_,; %) = V20 (Ny_,)}-

The measure p(£;) can be estimated by Lemma 7. and it follows that

’ 18 log log Nyp—y 1
M (El) = l.log Nk—l)z = 2[u+k—1}3"'!

(provided « = a;). Hence

L 5 1/1 1 , 1
Z.‘”’(EV) = 5(@7’9 +m—r ...)‘f._ —_—

r=1 l.u_

Using our previous estimates we see that
(pld—(EB,+Ey+ ...+ E)] +u(E]V B,V ...V Ey)
(31) 3

Vu—

( = lifl (1- (u+v;10ga) + 1_1 O

Having this inequality Lemma 9 can be proved easily as follows.
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According to the definition of F(M, N:x) = 0 we have

F(O.Ny2) _ Ful@) v FONy-1:2) }2p(No)
w(N,) = w w{Ny) |§w(2\",_1) w(Ny)

An elementary computation shows that

Yo~ logu 1
PN, = (T=(%a)) log u+1) ~ (1F(2/a)) (1+(1/u))

for any »=1.2.3....;¢ > 2 and wu = 3. Similarly one shows that
PN, p(N,)< ]’ Jla—1) for any v=1,2,3, ...:a = 2 and u == 0. Hence
we have

F(0,N,;x) - Fy(x) . 1 . F(0,Np—_y32)
T TR et =

for any »=1.2.3. ...;6 > 2 and u» = 3.
If we 1estr1c*t ourselves to those x’s which belong to the set

=(E,—E,+..+E)N{[I-E{VEU..VUE)
then by (30) F(0. N, ;:0)< V2p(N,_,) for every v=1. 2. .... k and by (28)
F.(x)p, = 1—¢/2 for a suitable v=v(x) < L. Hence on the set ¥ we have

e F(O_.‘\,y;.’i:] - E
mMaxiniuim —\,— =1 — =
1sv<k yiiNy) 2

1 - 4
(14+(2/a)) (1 +(1/u)) la—l'

Moreover according to (31) we have

£ 1 1 .
e _ ] s ] (- — — O(a=%?2),
0 a@®>1-11 (- ege) — 7= 0@
Now the truth of Lemma 9 is clear: Given =0, =0 and N. first we

choose a=a(e) such that a = ay(e), a >N

4 & 1 g
'eozi<7 *d =17
Then N,=N (v = 1) is satisfied. Next we choose w=u (g, £, ) == 3 such
that 'l-%ﬁ;) =1- % and the sum of the last two terms in (*¥*) is

numerically les than 7/2.
Finally we choose L=k (q. e. y) such that

ﬁ(‘“m‘a)g%'

ym]

Then (26) holds on the set E and u(E) = 1—3. This proves the lower
estimate in the law of the iterated logarithm.

4. The upper estimate in the law of the iterated logarithm
It will be sufficient to prove the following statement:

Lemma 11. Given arbitrarily small numbers ¢>0, >0 there exists
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an Ny=2N, (4, &. ) such that
(32) F(O. N:2) < (1-e)(N)
for every N = Ny and every xel exeept possibly on a set of measure at most 7).
The proof of this lemma consists of three steps. Let @ > 1 be a parameter
which will tend to 1 at the end of our proof. We start from the following:
Lemma 12. Le N = Nyla) be an arbitrary integer. Let the integers
n=n(N) =0, A=A(n) =1 and 1 << i=Ai(n) < A(n) be defined by the
inequalities [a*] < N < [a*1]. 29 < [a"1]— [a"] < 29+ and 201 < [a]'h < 22,
Then there exist integers N* < ’[ “] < 2N and m, satisfying

0 < <241 (I=4, A+1, ..., A+1)
such that

(33) \ F(0,N;2)< F(0, [a"]; x) + z F([a"] + my,, 2978, 25 &)
(_ — F([a"] + m; 2%, N*; z).

Proof of Lemma 12. According to the definition of (M, N;x) =0
we have

(34) FM,.N:2) K FM.N': 2)-FM+N',N—N'";:a)
for any M > 0 and 0 << N’ < N. Rince [a¢"] << N we obtain immediately
(35) F(0, N; ) < F(0. [a"]: 2)+ F([a"], N —[a"]: 2).

Using the definition of n. .1 and 4 << .1 we see that

< N - [a"]< [@"1] — [a*] < 2411
and so
:\'_ [ﬂn}: e, 2.1 L Ehq 2 a1 e \‘
where £=0,1(=2, 1+1,.... 1) and N*<2* < 2|a“]'-.
Now we return to (35) and apply (34) repeatedly to obtain the inequality

F(0, N;2) < F(0,[a]; w F([&"J £4 2%+ .= £, 205 N*; )

= F(O. [a"]; 2) + F([a"], e, 27; 2)
-1
A z F([r,;n:r + g4 od e eHl-‘ 1 , & al. St')
=4
+ F([a*] + e 24 +...—g 2, N*; z).

Next we introduce the notations m ;=0 and

‘)l 1 2A-1-1

My =€,2
fori=4, 21, .... A, Then the mequalities 0 <my<24HL (I=4, 4+1, ...
.. A1) are satisfied.
The relations F(M, 0:a)=0 and F(M.N:2) = 0 imply that
F([a") —e4 2 = ... + &, 2% ¢, 24 2)
= F([a"] ~my, 2", 2 2)
< F([a*] +my,, 2%, 24 7).
Hence indeed (33) holds.

i o o B = S o ]
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Our next object is to prove (32) for the subsequence N = [a"] (n=1,2,...).
For this purpose we need the following:
Lemma 13. Let 1<a <2 and let E, denote the sel
(36) By={alrel; F(0.[a]; ) > a@([a"])}.

Then given n>0, arbitrarily small, there cxists a ng=mny(q. a, ) such that
S uE,) < /2.

n=n 3

Proof of Lemma 13. If n = ny¢. @) then we can apply Lemma 7
with (x. f)=1. N=[a"] and t=a. Hence for n > ny(g. a) we have

18 log log [an]
(log [a*])?

p(E,) < < ¢(a) B2

where ¢(a)>0 depends only on a. Since a>1 the series d>n~%logn is
convergent and so > u(E,) < /2 if 2, > n, (q. @. ) is large enough.
Finally we have ziﬂ}ill up the gaps in the lacunary sequence
[a"], (n=1,2.3,...).
Having Lemma 12 this will be accomplished by proving the following:

Lemma 14. Let 1<a < 2. n = ngla) and let A(n) =1, i(n) =1 be
the infegers defined previously. Define the set E,,—=E},
-4

(37) By = {@|ael; F([a"] + m2=1, 252)> 27 ¢ (a— 1) $([a"])}.
Then given 1>0, arbitrarily small, there exists a ny=n, (q, a, ) such that

> n(E,)<n2.

azn, isig A 0§ﬂ<2d_l

Proof of Lemma 14. Let n = ny(a) so large that A(n) = A(n) = 2
and log log [a"] = 4. According to the definition of A(r) we have

241 @] — [a"] < a**'—[a"] < (a —1) [a"] + a,
and so
24-1 < 24-1 1 (24-1_gq) < (a—1) [a"].
Similarly, according to the definition of Z(n) we have for [ > 2
3loglog 2! = 3loglog [a" " =loglog [a"]+ (21loglog [a"]— log 27) > loglog[a"]

Hence for n = ny(a) we have the inequalities

(38) 3 log log 2! > log log [a"],
(39) (a—1[a"] = 271,
(40) log log [a"] = 4.

From (18) it follows that

f F(M, N; zy»dx<ec(q)p(pN)®
0
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for any M =0, N=1.2.3,... and p < 3loglog N. Therefore if { = i
we obtain
1

u(B) < [ ( Ll tm 27, %) )”dm{(...)ﬁpdx

En \ 25TF (@ 1) ([an])
p2l p
< C(‘])P( A p2 )
27 2 (a—1)[an]loglog [an]

for any p < 3 log log 2%. Hence by (38) p=[log log [¢"]] is an admitted
value of p. Using the inequalities (39) and (40) we see that

1(Er) < c(q)p( e )p< ¢(q) pe~2» 220-
2" 24 Jog log [an]

< £(q) (log ») 221= ¢2(log [a*])~2.

Consequently
alBy) < e(g, a) 28— lo?fgn

for any m > 0 and | =’
Summing over m, 0 << m < 241 we get

S By < (g a) 24180,
ogm<z4-1 %
and

#(Ey) < 20(q, a) %7

AT A g g A-1

The series >n~2logn being convergent the statement of Lemma 14
follows immediately.

Now given £¢>0 and 5> 0, arbitrarily small, first we choose a—a(e)>1
such that

l<a=<1 Ti and 4(@—1)22 "“-::i;
k=0
Next we choose Ny= N (7. £.9) so large that Ng™ < ¢/3, and n(N,) =ny(q..n)
satisfies the requirements of Lemma 13 and 14. Then the set
E=1-UIE, U(UUEP,,,)]

has measure p(E) = 1—y.

Let N = N, be arbltml\ Then we have by Lemma 12. inequality (33)

F(O,N;@) _ F(0,[an];x) K z B ([an] +myeqy 241, 245 2)

$N) T e[ “~ $(an])
F([an] +-mp 2%, N*; z)
VN '

If zeF then we have by (36) and (37)

F(O,N :r} 1 =2 N
L fa — 1yt 9 4 -+ "
$(N) tHa=1) 2 VN

J=2A
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Using the conditions on @a=a(s) and the inequality N* <2N"» we obtain
F(0, N; z)[$(N)<1+e for every N = N, (¢, e. 57) and every zcFE, where
w(E) = 1—=».'This proves Lemma 11. Hence our theorem has been proved.

University of Notre Dame and
Cornell Universitil
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