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1. Throughout this paper f (x) will denote a polynomial whose coeffi-
cients are integers with highest common factor 1, and 1 will denote the degree
of f(x) . We assume that the highest coefficient in f (x) is positive . It
has been known for some time that if f (x) is not the l-th 'power of a
linear polynomial with integral coefficients then there are infinitely ,
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many positive integers n for which fln) is l-th power free, i .e . fln) is not
divisible by any integral l-th power greater than 1 . In fact by a simple
application of the Sieve of Eratosthenes and an easy limit process it can be
proved (as has also been known for some time) that the integers n for which
f(n) is l-th power free have positive density .

Let us now assume that l > 3 and that f(x) is not divisible by the
(l-1)-th power of a linear polynomial with integral coefficients . It has
then been conjectured that there are in general infinitely many n for which
fln) is (l-1)-th power free, and further that the density of these n is positive,

The need for the qualification "in general" arises in the following way .
It may happen that there exists an integer d such that f (n) = 0 (mod d)
for every n . It is known that such an integer d must be a divisor of I!,
and the example

f(x)=1!((l)+1)

shows that d may equal l!. Now if l is a power of 2, l ! is divisible by 21-1,
and if d = l ! it is impossible for f (n) to be (l-1)-th power free for any n.
We must therefore exclude this case, which we do by assuming from
now onwards that if l is a power of 2 there exists some n (and therefore
infinitely many n) such that f (n) # 0 (mod 21-1) .

In the present paper we shall prove the following

THEOREM . If 1 > 3 and f(x) satisfies the conditions stated above, then
there are infinitely many positive integers n for which f(n) is (l-1)-th power
free.

It seems very likely that the integers n with the property in question
have positive density, but this I have not been able to prove .

It will be clear from the proof that the following result holds in the
exceptional case when f (n) = 0 (mod 2d -1 ) for every n : there exist infinitely
many n for which f (n) = 21-1 un , where u , is odd and is (l-1)-th power free .

2. In this section we dispose of the case in which f (x) is reducible . We
can express f(x) as g(x)h(x), where g(x) and h(x) are polynomials with
integral coefficients. Moreover, there exists such a representation with
g(x) and h(x) relatively prime, except in the case when f (x) _ (0(x)) k ,
where q(x) is irreducible and k > 2 . In the latter case, by the result first
mentioned in § 1, there are infinitely many n for which 0(n) is l/k-th power
free, and therefore f (n) is (l- I)-th power free .

Suppose then that f(x) = g (x) h(x), where g(x) and h(x) are relatively
prime . By hypothesis, neither of them is the (l-1)-th power of a poly-
nomial with integral coefficients . For every prime p there exists a residue
class a9 (mod p) such that f (a.) # 0 (mod p1-1 ) ; for if p > 2 this follows
from a result stated in § 1, since pl-1 does not divide I!, and if p = 2 this
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was the assumption made. Let t be a large positive integer, and let

T=(lI p

i-1

p<t

Then there exists a residue class aT (mod T) such that f(aT) ~6 0 (mod p t-I)

for each p < t .
The degrees of both g(x) and h(x) are less than 1, and neither of these

polynomials is an (l-1)-th power . It follows from a simple sieve and
limiting process that the density of the integers y - aT (mod T) which
satisfy g(y) - 0 (mod qZ-1 ) for some prime q > t is less than .T-1. (The
proof is similar to that of the result, stated in § 1, that fl n) is l-th power free
for infinitely many n.)

The same holds for h(x), and therefore there are infinitely many
y-ar (mod T) for which both g(y) and h(y) are (l-1)-th power free .
From the fact that g(x) and h(x) are relatively prime it follows that the
highest common factor of g(n) and h(n) is bounded for all n, and is thus
less than t for sufficiently large t . Thus we finally obtain the existence
of infinitely many y-aT (mod T) for which f(y)=g(y)h(y) is (l-1)-th
power free, as was to be proved .

3. We assume from now onwards that f (x) is irreducible, and proceed
to explain certain notation which will be used throughout the subsequent
work.

Let p(a) denote the number of solutions of

f (n) - 0 (mod a), 0 < n < a,

and let p x (a) denote the number of solutions of

f (n) - 0 (mod a), 0 < n < x .

Plainly

	

p. (a) < [T]
]
p(a)+p(a) .

	

(1)

If p does not divide the discriminant of f (x) it is well known that

p(py) < l for all y > 0 .

	

(2)

Let x be a sufficiently large positive integer, and let u1, u 2 , . . . denote
the integers satisfying the following three conditions

(i) x(logx) -312 < u; < 2x(logx) -3 / 2 ;

(ii) u; is squarefree ;
iii) all prime factors of u ; satisfy

(log49 < p < x (log x)-p,

where f is a sufficiently large number which will be determined later .
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Let k1 , k 2 , . . . denote the integers not exceeding x for which

(i) f (ki) is divisible by some u,

(ii) f(ki) # 0 (mod pZ-1 ) for all primes p < (log x) 3 / 2

Let z denote the number of k's, and enumerate the k's in order, so that

k l < k2 < . . . < k2 < x. Let d+ (f (ki)) denote the number of divisors of
f (ki ) among the u's .

We use c l , C2 , . . . to denote positive numbers which depend only on the
polynomial f (x) .

Occasionally, for convenience of printing, we write A for 1/(l-1) .

4. In this section we assume that there are infinitely many positive
integers x for which

In this case the proof of the theorem will be comparatively simple . We
shall show that if (3) holds for a certain x then the number of k's for which
f(ki) is (1-1)-th power free is greater than Zx(lo (y logx)-2 , and this implies
the result .

Suppose p1-1 divides f (ki ) for some prime p . We know that for every
ki there is some u which divides f(k i) . If p > x(logx)-13 then p and u are
relatively prime, by condition (iii) on the ui . Thus

whence

z > X (log log X )-2 .

pd-u <f(ki) <f(x) < C, .11,

p < (Cl xl/u)A < c2 x(10gx) 3A/ 2

(3)

by the lower bound for the u's . In view of condition (ii) on the k's, we have

(logx)3 /2 <p < C2x(logx)3Aj2.

	

(4)

The number of integers k < x for which f (k) - 0 (mod p1-1 ), where p
satisfies (4), does not exceed

Y- Px(p
1-1 )

(4)

where the summation is over primes p satisfying (4) . Using (1) and (2),
the latter being applicable because p is large, we have

( Px(p1-1 ) < E (px 1 P(P1-1)+P(P1-1))

< lx

	

E

	

p-1+1+17r (C2x (logx)3A/2)
p > (log x) s1'

< C 3x (log x)-1+C4 x (10g x)(3A /2) -1

< Jx(log log x)-2 .
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It follows from (3) .that there are at least 2x(loglogx)-2 of the k ; for which
f(ki) is not divisible by the (l-1)-th power of any prime, and this proves
the result .

5 . We, can now assume that for all sufficiently large x we have

z <x(log logx)-2 .

	

(5)

The proof is based on the following three lemmas, which do not them-selves depend on the assumption (5)
.

LEMMA 1 .

	

E d+(f(k;)) > c5x(log logx)-1 .
i=1

The proof of this lemma is complicated, and we postpone it to §§ 7-9 .

LEMMA 2. Let p be a prime satisfying p < (log x)O . Then

E d (f (n)) < c ., (x log x) p-t+1,(6)

where the summation is over positive integers n satisfying

n < x, f (n) - 0 (mod pt-1) .

The proof is very similar to my proof  that

E d(f(n)) <cgxlogx,
n=1

t Journal London Math. Soc ., 27 (1952), 7-15
1

Proc

. K. Neder. Akad . van Wet ., Amsterdam, 42 (1939), 547-553 .

(6)

and can be omitted . The lemma would in fact remain true if the condition
on p were relaxed to p < xa- •,

except that ce would then depend on e

.

LEMMA 3 .

	

E l d (f (n)) } 2 < x (log x)c7 .
n=1

This is a result of van der Corput ~ .

6. We now complete the proof of the theorem . Let us assume that
for every i with 1 < i < z we have

f (kj) - 0 (mod pd-1)

	

(7)

for some prime p (depending on i) . We shall show that this leads to a
contradiction . The result then follows on giving x a suitable sequence of
values. By condition (ii) on the k's, the prime p in (7) must satisfy
p > (log x)3(2 .

Denote by k1' < k2' < . . . < k8 < x those k's for which f(k) is divisible
by more than one u. If f(kl') is divisible by u1 and u2 it is impossible
that ul should divide u2, in view of condition (i) on the u's . Hence u2
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has at least one prime factor which does not divide u 1 , and it follows from
conditions (i) and (iii) that

[u1, u2] > x (logx) II-3/2 .

	

(8)
If (7) holds for ki ', and p > x (logx)-$, then p cannot divide u l or u2 ,

and therefore
pd-1[u1, u2] <f(k1') < c1 X11

whence, by (8),

p < cs x { (logx)$-312}-'` < c8 x (log x) -8 /2d, (9)
assuming /3 > 3 .

We evidently have

E d+(f(ki)) < E d+(f(ki'))+z,ti=1

	

{=1

since d+ (f (ki )) = 1 if ki is not among the set k' . Hence, by (5) and Lemma 1,

E d+(f(ki')) > c 5 x(loglogx) -1-x(loglogx)-2 > c9 x(loglogx) -1 . (10)
d=1

Denote now by t1< t2< . . . < t. < x those numbers k' with the property
that f(ti ) is divisible by pZ-1 for some p > (log x),1 . Then p satisfies (9) .
If ki' is not one of the numbers t then f(ki') satisfies (6) for some prime p
with (log x) 3 1 2 < p < (log x)8 . Hence

Y1
d+ (f(ki')) < p Ed (f(n)) + tiEl d (f(ti))

= E1+E2,

	

( 11 )

say, where p in E l satisfies the inequalities just stated . Using Lemma 2,
we obtain

El < c6x logxEp-1+1 < clox(logx)-1/2 .

	

(12)
P

Also, in view of the definition of the numbers t and the inequality (9),
we have

w < E px(p
1-1 ),

(13)
where the summation here is over

(log x)P <p < c8 x(log x)-P/ 2Z .

	

(13)

Thus, by (1) and (2),

w < E (XP-4+1 + 1 )p(p c-1 )
(13)
lx E p-1+1 +1 E 1

(13)

	

(13)
< c11 x (logx)-p+c12 x(log x)-1-P1 21

< c12 x(log x)-1-,



ARITHMETICAL PROPERTIES OF POLYNOMIALS.

	

422

provided f3 > 21(1+c 7 ) . Consequently, by Lemma 3 and Cauchy's
inequality, we have

Z2 iEl d ( .f(ti)) < {wx (log x) c '}1I2 < ci4 x(log x)-112

	

(14)

But now the estimates for E l and 12, when substituted from (12) and
(14) in (11), give a contradiction to (10) . As was seen earlier, this contra-
diction proves the theorem .

7. We now come to the proof of Lemma 1 . We recall that d+ (f (ki))
denotes the number of divisors of f (ki ) among the u's . Hence, inter-
changing the order of summation, we have

z

iII d+ (f(ki)) = Z Px ' (ui),

where px'(u i ) denotes the number of positive integers n <x satisfying

f(n)=0 (mod u;), f(n) # 0 (mod pZ-1 ) for all p < (log X)312 . (16)

The proof of Lemma 1 falls into two stages .

LEMMA IA .

	

px (u;) > C15px(u;) for all j .

LEMMA lB .

	

E px(u;) > c1 6 x(loglogx) -1 .
I

In view of (15), these two results imply Lemma 1 .

8. Proof of Lemma IA . Let D denote the discriminant of flx), and let
t be a large but fixed positive integer greater than D. Defining T as in § 2,
we recall that there exists a residue-class aT (mod T) such that f (aT) # 0

where the summation is over primes p satisfying t _<p < (log x )3/2 .
Since the u's are composed of large primes, we have (u ;, T) = 1 . Since

also u; <x, it follows easily from the definition of p"(u;) in (17) that

ps (us) > p

	

(19
s

(mod pi-1 ) for all p < t . Let px (u,) denote the number of positive integers
n < x satisfying

f(n)=0 (mod u,), n=aT (mod T). (17)

On comparing (17) with (16), we see that

P~ (u,) >p"(u,)-gyp' (pE^l u5) , (18 )
r
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In the terms of the sum on the right of (18), we have (p, u;)= 1 by
condition (iii) on the u's, provided /3 > a. It follows easily that

Px(2 I-1 u;) <
li

l-I u,T] P(2'
-1 u

;)+P(2~-1 u;)

xipt-1 U T+1P(u;),

	

(20)

since p(p1-1 ) < l by (2), in view of the fact that p > D .
Using (19) and (20) in (18), we obtain

P X , (u;) > 2Tu; P(u;)ll-2
lPEt p~+1 } -lP(u;)~~(logx) 3/2)

> xp(u ')-c17p(u,)(log x)3/2(loglogx)- 1
4Tu;

xp(u5 )
> 5Tu; '

since u; < 2x(logx)-3 1 2. Since

Px(u;) < ux
P(u;)

9

by (1), Lemma 1A now follows .

9. Proof of Lemma 1B . We have

EP.(u;) > x P(u;) > Wogx)3/2z p (u; ) .
;

	

I 2uJ

	

I

Hence to prove Lemma 1B it suffices to show that

Zp(u;) > cisx (log x) -312(log log x)-1 .

	

( 21)
I

Put y = x (log x) -3 /2 . Consider all numbers of the form vv, where v
is a squarefree positive integer not exceeding xi/3 whose prime factors all
lie between (logx)O and xE, and p is a prime satisfying

y/v < p < 2y/v .

Here E is a sufficiently small positive number which will be chosen later .
The numbers vp are distinct and each of them is a u . By the multipli-
cative property of p(m), we have

E P(u;) > E P(v) E P(p),

	

(22)
i

	

V

	

v

where , the summations are over v and p as just defined .
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By the prime ideal theorem*, we have

E p(p)=z(logz) -1+O(z(logz)-2) ;

	

(23)
p<z

and from this it follows that the inner sum on the right of (22) satisfies

E P (P) > c1s yv-1(logy)-1 .
p

Thus, by (22),
EP(u3) > c1sy (log y)-1 EP(v)/v .
s

	

o

Hence in order to prove (21) it will suffice to show that

E p(v)/v > c20logx(loglogx) -1 .

	

(24)
V

The following simple proof of (24) was suggested to me by the referee .
We have, for s > 1,

EP(v)v-8 =11 (1+P(p)p-8)-EP(w)w-8,

	

(25)

where p runs through all primes satisfying (log x)8 < p < xe, and w runs
through the squarefree integers greater than x 113 which are entirely com-
posed of such primes . Plainly

11 (1+P(p)p-8) EP(w)w-8 < E p(n)n -8 .p<(10g2)0 W n>x 113

Using the well known result f
m

8m = E p (n) < C21 m,
n=1

we obtain by partial summation

n Z„ap(n)n-8 <.Zj'sm(m-s-(m-}-1) 8 )

s x(1-s)l3
< C22 s-1

Now put s = 1-}- (e log x) -1 . Using (23) we find that, for z < x •,

log log z-c23 < E p(p) p-8 < log log z+c24,
p<z

where c2, and c24 are independent of e . It follows that

C25 logz < 11 (1+p(p)p-8) < c2g logz .
p<z

Using this, with (27), in (26), we obtain

E p (w) w-8 < c27 (e log x) e-1 /(3•)(log log x) -1 .

* See Lemma 7 of my paper cited earlier .
f This is a consequence of the prime ideal theorem.

(26)

(27)
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Also the product on the right of (25) satisfies

II (1+p(p)p_5) > c c25	

a

	

x 'P

	

26

	

g log x

Hence, if e is sufficiently small, we have from (25)

E p(v)/v >1 E P(V)

V_S > c28(e) logx(loglogx) -1 .
n

	

V

This proves (24), and so completes the proof of Lemma 1B .

10. My original proof of Lemma lB was very much more complicated .
It depended on the following lemma, which may be of some interest in
itself and is therefore stated here without proof.

Let Z be large and let q1 , q2 , . . . be any primes not exceeding Z. Let
w1 , w2 , . . . be all the squarefree integers composed of these primes . Let there
correspond to each q1 a real number a; satisfying 1 < a= < 1. For each w;
define

g(w1 ) = H « ; .
4; I w;

Then, if k > 1,

E g(w1)/wl<

	

l

	

Eg(w1)/wl

	

l

	

II (1+,x,lq,),
w;>Zk

	

{c29 k] . w;

	

[c29 k]

where c29 depends only on 1 .

I conclude with two remarks bearing on the present paper . It was
proved by Estermann* that every sufficiently large positive integer is the
sum of a square and a squarefree integer, and by similar methods one can
prove that every sufficiently large positive integer is the sum of an l-th
power and an l-th power free integer . The methods of the present paper
would doubtless allow one to prove that every sufficiently large positive
integer is the sum of an l-th power and an (l-1)-th power free integer .

It is possible to prove that there are infinitely many primes p for which
f (p) is l-th power free, provided of course that f (x) is not the l-th power of a
linear polynomial . It is reasonable to conjecture that there are infinitely
many primes p for which f(p) is (l-1)-th power free, assuming that f(x)
satisfies the conditions of § 1 ; but the methods of the present paper do not
seem to be powerful enough to prove this . I have also not been able to
prove, for example, that n4+2 is squarefree for infinitely many n .

Department of Mathematics,
University College, London .

* Math. Annalen, 105 (1931), 653-662 .
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