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Throughout the present paper, -1 < x1n)

	

n)< x(
2 < . . . < 47' < 1 denote the

roots of the n-th Tchebicheff polynomial T n(x), and unless otherwise stated it
is understood that the fundamental points of the Lagrange interpolation are
the 4') . 1 It is well known that2 there exists a continuous function whose
interpolation parabolas diverge everywhere in (-1, -1-1) . In the present paper

we prove that for x0 = cos P p - q =- 1 (mod 2), (pi, q) = 1 there exists a con-
q

tinuous function f (x) such that Lnf(x0 ) oo 3 . Turán and 14 proved that this does
not hold for any other point . In this direction Marcinkievicz5 proved that if
the fundamental points are the roots of Un(x) = T;,+1(x) then for every contin-
uous function f(x) and every point x0 there exists a sequence of integers n1 <
n2 < . . . such thatL.n; (,f (x0)) -f (x0 ) . We remark that in the case of the Fourier
series it is well known that there always exists a subsequence of the partial
sums converging to f(x0) . This fact may be of interest because there is often an
analogous behaviour of the Lagrange interpolation parabola and the Fourier
series .

First we prove some lemmas .
LEMMA 1 .

x ;"`) _ x;"> > 13 , for m >= n .
m

PROOF . Write

2i-1
xs') = cos 1~

M)

	

2m Ir .

x;m) - x ( n) > j Em)
- 4 nl I sin

7
> 7 -' > 1 q.e.d .

2n. 4n 2mn W

' For the employed notations see P. Erdös and P. Turán, Annals of Math ., Vol . 38 (1937),
p . 142-155. If there is no danger of confusion we will omit the upper index n .

2 G. Grünwald, Annals of Math ., Vol . 37 (1936), p . 908-918 .
2 Ln(f(x)) denotes the Lagrange interpolation parabola of f(x) .
9 This result was stated in the Annals of Math ., Vol . 38 (1937), p . 155 but there was a

misprint .
I Acta Litt ac Scient . Szeged, Tom . 8, p . 127-130 .
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LEMMA 2. Put x0 = cos ! Tr, p = q =- 1 (mod 2) ; then constants c1 and c2 exist
q

such that

PROOF .

Put x ; n) < x0 < 4+i ; then

min j x0 - X!" > 2nq min I sin 2i2n 1 r, sin 2j+1 a / > .
i-1,2, • • n

	

\\\

	

'

LEMMA 3.

lkn) (x0) I < (log n)'

where E' indicates that the summation is extended only over the xkn ) satisfying

xx ") - x0 I >	1
(log n) } '

PROOF .

Lemma .
LEMMA 5 .

P. ERDÖS

min I x 0 -
x in) I > c1-,

i=I,2, • • n

	

n Tn(x0) I > C2 .

j Tn(x0) ) = cos q ) >- cos
\2

- 2q} > C2-
(q

(x0) I -
Tn (x0) < (log n) l

nTn (xk) (x0 - xk)

n
since I Tn(x0) I <- 1 and T; (xk) -

	

2 Z n, which proves the Lemma .
-01 - xk)

Without loss of generality we may assume that x 0 > 0 . Let x; n) < x 0 < Xi nl

Now we prove

LEMMA 4 . Suppose 0 < xk" ) < xyn)
(i

.e ., 2 < k < j ) ; then

I lkn)(x0) I >
j

Cg

-k

PROOF . We have

l
k
(n) (x0) I =	' Tn(x0)	 > C2 -01 -xk)	C4

Tn (xk) (x0 - XI) i

	

n( - xk) > n(xj+l - xk)

by Lemma 2. Now x,+1 - xk < (j + 1 - k) - <
c5(j

-
k)

, which proves thcn

	

n

t `

	

I ,fin) (x0) I > C6
tog n

(2k-11, .n)=i

	

log log n
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PROOF . By Lemma 4 we have

Zkn ) (xs) I > E„ I Zk n) (xp) I > Cg
(2k 1,n)=1

	

i - k

where the two dashes indicate that the summation is extended only over those

k for which (2k - 1, n) = 1 and
2
< k < j . It is clears that there are at least

c7n of the xkn) between 0 and x ; n) , thus

E

» 1
k > Ell' 1

1
j--k

where the three dashes indicate that the summation is extended only over those
k which satisfy (2k - 1, n) = 1 and j - k < c7n .

Denote by \nu(n) the number of different odd prime factors of n . It is well
log n

known that \nu(n) < C8
log log n' (This result is an immediate consequence of

the prime number theorem, but can also be obtained in an elementary way.)
The number of integers k satisfying j - x < k < j, (2k - 1, n) = 1 equals by
the sieve of Eratosthenes

x

	

'>> x

	

1-1 -2
Y(n)

-

Py[

x
p] +

P j . pq

	

pin1
x

X T

	

p

> c9 1og log n - V
log niiog log n > CIO

log log n
for x > -\/n, (p odd)

since it is well known that

	

1 - 1 >	C11

	

8 Thus
Pin

	

p

	

log log n

E ll,
1 k > tog tog n cgn>r>>/n r >

Cs
loglologn n

q.e.d .
.7 -

THEOREM 1 . There, exists a continuous function f(x) such that Ln(f(x0 ))

PROOF . Write

f(x)_
	fn(x)

n=n 0 -\/log n '

a i.e . I xr+1 - xr n~ 5 -, r = 1, 2, . . .
n

7

Cx

'
denotes the number of the k's in the interval j - x < k < j for which 2k - 1 is

p

divisible by p . It is clear that
p x

differs from
z
by less than 1 .

p
8 E. Landau, Über den Verlauf der zahlentheoretischen Function . Archiv der Math . and

Phys., Ser . 3, Vol . 5, (1903), p . 863.91 .
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Mx)

Then

is defined as follows :

fn(xgn) ) = signum lk n '(x0) for (2k - 1, n) = 1,

1 =0(n)f n (Xk

	

2
2'

	

,

in the intervals l x (
k n) , xkn' +

22n)
and

~xkn),

x(n) - 22n J, fn (x) is linear and else-

where fn(x) = 0 .

First we show that f (x) is continuous .

If for a certain y, fn(y) and f,n(y), m > n are both different from 0, we have for
a certain k, and k2

But by Lemma 1

xk1 ' - y < 22n,

	

I xk2) - y I < 2,

(n)

	

(+n)

	

2
Ixk1 - xk2 I < 22n •

hence 2m' > 221 , i .e . M > n2 for n > 3 . Thus

z
fn(x) <.		1	2r < E .

n>n(e) \/log n

	

r>r(e) -\/log 2

Put

wl(x) _

	

'\/log r'r=n

P. ERDÖS

fn(x)

n=np /log n

is uniformly convergent, i .e. that

E Mx)
< E .

n > n (e) '/log n

I x
(n)

	

(n)
I

	

1
k1 - xk2 > 3m

It suffices to show that

~02(x) _ `
fr(x)

r> n -\/log _r

L.(f(x0)) = L.(w~(x)) + Ln
fn(x)

} + Ln(~2(x))-~/log n
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First we show that L n (\phi2(x)) = 0.It will evidently suffice to show that for
every k, \phi2(xkn)) = 0 or that for r > n, f,(xkn )) = 0 . If for a certain
r > n, fr(xk n) )

	

0 we have for a certain l

x kn) _ x?')

	

1
< -

22 *'

which does not hold for by Lemma 1 for 2 21 > a 3 .

Next we estimate Ln(\phi1(x)) . If for a certain xkn) , fr(xkn) ) 0 0 then for a
certain l

X14
) _ x (r) < 1

221

which by Lemma 1 means that

2 2 ' < n3

	

or

	

r < 2 log log n for n > n0 .

Thus if for a certain xkn) , \phi1(xkn)) 0 0 then by Lemma 2

I xkn) - x0 l > min I x(, r) - x0 j - 1 >
c1
- 1, >	

1

	

for r > n0.
i=1 .2 .- • • r

	

22*

	

r

	

22

	

(log n) }

Thus by Lemma 3

Ln(\phi1(x0)) < c12

	

\sum,

	

lkn) (x0) I < c 12(log n)'
Izk-sol>(1og n)_g

Now by Lemma 5

Ln(fn(x0)) _

	

I lkn)(x0) I > cg log n
(2k-l,n)-l

	

log log n

since for (2k - 1, n) F6 1 fn(x0) = 0 . Thus finally

L.(f(x0)) > ce (log n) - c12 (log n) l - co .
log log n

Similarly we could prove that a continuous f(x) exists such that L,,(f(x0 ))
converges to any given value .

THEOREM 2 . If x0 ,-6 cos p 7r, p = q = 1 (mod 2) then there exists for every
q

continuous f (x) a sequence of integers n1 < n2 < . . . such that L, (f (x 0 )) --+ f (x0 ) .
PROOF . First we prove that there exists a sequence if integers n, < n 2 < .

such that I Tnk (x0) I < -c13 . We need the following
n

LEMMA 6 . If x0 54 p, p =- q == 1 (mod 2), then the inequality
q

-
2r-1

< c14x0

has an infinite number of solutions .

2nk nk
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PROOF . If x 0 is rational it is of the form
2
2nk

1,
thus the Lemma is trivial .

Hence we may suppose that x0 is irrational . It is well known that the equa-

tion x0 - b < 162 has an infinite number of solutions . If infinitely many- of

the b's are even the Lemma is proved, if not consider the least positive solution of

2ad-bf=1 .

Obviously f - 1 (mod 2) and d < b thus

which proves the Lemma .

It~ X0 - 2r-1

Thus

hence from

s We have

2n

ky6r xk 1 x°

(The dash indicates that k = r is omitted .)

P . ERDÖS

1

	

1

	

C14x0 - f < -}-- <-
j

	

2d I = b2

	

2bd

	

d2

914< 2 the have
n k

Tnk(x0) < cos
7r - C14 < 913
2

	

n.k

	

n

Consider now a sequence of integers n, < 42 < . . . with x0 -	
2r - 1nk

C14
. We are going to prove that Ln.k (f (x0)) - f(X0)

nk
For k 5Z r we have

I lk(x0) - !	
Tnk(x0)	 <

Tnk(xk) (xk - x0) I
C13

n2(xk - x0)

E I lk(x0) I < n2 E
X1, x0

1

	

I = 0(1),9

n

1k(X) = 1
k=1

E,

	

1

jxk- 01600gn)-1 I xk - x0

+

	

E,

	

1

	

< n log n + en log n = o(n 2 ) .
I xk-xo I >(logn) -1 I xk - x0 1
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l r (x0) = 1 - 0(1) .
Thus

Lnk(f(x0)) = f(xr)`,(x0) + Ef(xk)1k(x0) _ (f(x0) + E) [1 - 0(1 )1 + 0(1 ) -f(x0),
kpbr

which proves Theorem 2 .
On the other hand we can prove that for every x in (-l, +1) there exists a

continuous f(x) such that

E L.(f(x0))
lim -=5n
n-oo

	

n

The proof is very similar to that of Theorem 1 .

PRINCETON, N. J .
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