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Throughout the present paper, —1 < 2{” < z3™” < ... <z® < 1 denote the
roots of the n-th Tchebicheff polynomial T',(z), and unless otherwise stated it
is understood that the fundamental points of the Lagrange interpolation are
the z{™.' Tt is well known that® there exists a continuous function whose
interpolation parabolas diverge everywhere in (—1, +1). In the present paper

we prove that for oy = cos gm, p = q=1(mod2), (p, ¢) = 1 there exists a con-

tinuous function f(z) such that L.f(x,) — «°. Turén and I* proved that this does
not hold for any other point. In this direction Marcinkievicz® proved that if
the fundamental points are the roots of Ua(z) = Th4i(z) then for every contin-
uous function f(x) and every point x, there exists a sequence of integers ny <
ng < - - - such that L, (f(zo)) — f(z0). We remark that in the case of the Fourier
series it is well known that there always exists a subsequence of the partial
sums converging to f(zs). This fact may be of interest because there is often an
analogous behaviour of the Lagrange interpolation parabola and the Fourier
series,

First we prove some lemmas.

Lenmma 1.

(m) m o 1
T — &y > -?;1:5,

form = n.
Proor. Write

2™ = cos 9™, O =

Then we have

: .o T
[2f™ — 2™ | > (8™ -9V |sin— > = —

1
2n 7 4n 2mn ® m? e,

! For the employed notations see P. Erdés and P. Turdn, Annals of Math., Vol. 38 (1937},
p. 142-155. If there is no danger of confusion we will omit the upper index n.

2 . Griinwald, Annals of Math., Vol. 37 (1936), p, 908-918.

3 L.(f(z)) denotes the Lagrange interpolation parabola of f(z).

1 This result was stated in the Annals of Math., Vol. 38 (1937), p. 155 but there wasa
misprint.

5 Acta Litt ac Scient. Szeged, Tom. 8, p. 127-130.
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310 P. ERDOS

LEmMmA 2. Pui zy = cos qBT’ p = q = 1 (mod 2); then constants ¢, and c; exist

such that

. [+
min |z — 2| > 2, | To(zo) | > co.
i=1,2,+'n n

Proor.

= np T_ 7
| Toxo) | = cos (_qT r) = cos (Q 29) > cs.

Put z}® < 2o < z{}; then
A {n) ™ . . 2
= > — min | sin ———
i=}'g.l:t'l'n lxﬂ i l an (
LeMMa 3.
2 K@) | < (log n)?
where Y, indicates that the summation is extended only over the z™ satisfying
|z — 20| > -—1—
(log n)}
Proor.

(log n)*
T

Tn(zli)
T o () (o — )

| (o) | =

since | Ta(zo) | < 1 and To(z) = —\mﬁ_—ﬁ—) = n, which proves the Lemma.

Without loss of generality we may assume that 2o > 0. Let z{™ < 2o < {3} .

Now we prove
Lemma 4. Suppose 0 < z;"” < z{™ (i.e., g <k< j); then

Cs
i-®

| 5P (o) | >

Proor. We have

(n) _ T,.(Io) | Cz‘\/ (1 s .’L'g) Ca
7@ | = | st =2 | Z 2@ =) > e — )

‘ﬂJTw, which proves the

by Lemma 2. Nowz; — 2 < (j+ 1 — k)% <

Lemma.
LEmMma 5.

(n) log n
(%—§}=1 | L™ (o) | > Soxlogn
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Proor. By Lemma 4 we have

S e > T E > 0 T

(2k—1,n)=1
where the two dashes indicate that the summation is extended only over those

k for which (2 — 1,n) = 1 a-ndg < k < j. TItis clear® that there are at least

em of the 5™ between 0 and z{”, thus

" 1 s 1
2 iy e v ey

where the three dashes indicate that the summation is extended only over those
k which satisfy (2t — 1, ») = land j — k& < on.

Denote by »(n) the number of different odd prime factors of n. It is well
log n
log log n’
the prime number theorem, but can also be obtained in an elementary way.)
The number of integers k satisfyingj — z < k < 7, (2k — 1, n) = 1 equals by

the sieve of Eratosthenes

_s[=7 N (1_5)_2"‘">
’ mzn[?i]—l_p?n[pq] ‘an P

for x > v/n, (podd)

known that »(n) < ¢ (This result is an immediate consequence of

> ¢ ¢g lognfloglogn >

. S i
log log n “loglogn

since it is well known that ][ (1 — 1) oo B rppay
pin y) log log »

1 C10 1 logn
e > = g ————— (q.e.d.
Z j—k = loglogn m;;‘;a r > 5% log log » 1

TuroreM 1. There exists a continuous function f(x) such that L.(f(z)) — = X
Proor. Write

_ 5 Sa(2)
@) = u;no Viog n’

(n)

B (n)
Sje gy —a = =,r=1,2 .

™

k()
£

d [g:l denotes the number of the k’s in the interval j — 2 < k < j for which 2k — 1 is

r
divisible by p. It is clear that [g] differs from E by less than 1.

8 B, Landau, Uber den Verlauf der zahlentheoretischen Function. Archiv der Math. und
Phys., Ser. 3, Vol. 5, (1903), p. 86-91.
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fa(x) is defined as follows:

falzt?) = signum W (zo) for (2k—1,n) =1,
fala® = Y & 0
n & 22" L]
: 4 (n} _(n} 1 (n) . (n} i 1
in the intervals | =", 2™ + o and | zz", ¥ — o ) fa{x) is linear and else-
where f,(z) = 0.

First we show that f(z) is continuous. It suffices to show that

> fal®)
w=no v10g n

is uniformly convergent, i.e. that

fa(2)

n>nle) ‘\/log n

If for a certain y, fa(y) and fu(y), m > n are both different from 0, we have for
a certain &y and ks

1
'ﬁ?ﬁ:

n 1 m
!xfg.l)_y|<§fﬁ! |xﬁ§2}_yl<

i.e.

2
|:z:£:'} — x;E;")[ < o

But by Lemma 1

) (m) 1
lxﬂ‘ _5k:‘|>ag

hence 2m® > 2%, i.e. m > n’forn > 3. Thus

fﬂ(x) 1
< e < &
n>nie) ’\,/log n r>rle) \/log 2n ¢

Put

_ = fr(m) e fr(z)
@) = r;u Viog r’ wlz) = ,g;, Viog r’

Then

Ty Lifadal) % ( j;j’;)n) + Lulea(@)).
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First we show that L.(g(2)) = 0. It will ev1dently suffice to show that for
every k, {pz(ﬁk ™) = 0 or that for r > n, fi(@{™) = 0. If for a certain
r > n, f,(a: “}) # 0 we have for a certain !

1
|I£n} (r) t & 22”

which does not hold for by Lemma 1 for 2°° > #°.
Next we estimate L.(g:i(z)). If for a certain z{”, f.(zf™) = 0 then for a
certain I

|z — 2" | < o 22,

which by Lemma 1 means that
2" < or < 2loglognforn > n.
Thus if for a certain z{™, ¢i(zt™) = 0 then by Lemma 2

= ; w_ gt a1 1
zol>‘__111.nélll.1“rlx; Zo | 57 > 2“">(logn)i for r > np

| m(ﬂ)

Thus by Lemma 3
L.(e1(z0)) < e 2 |1 (@) | < crllog n)?

|ex—2o]|>(log n)™

Now by Lemma 5

_ (n) __lg_gi
La(fa(x0)) = m_%,_l”" () | > e log log n

since for (2t — 1, n) # 1 fu(ze) = 0. Thus finally

(log n)* i
Ln(f(xo)) > Cs w Cio (Iog ﬂ) —* o,

Similarly we could prove that a continuous f(z) exists such that L,(f(zo))
converges to any given value.

TaEOREM 2. If 9 5% COs g m, p=q= 1 (mod 2) then there exists for every

continuous f(x) a sequence of tntegers ny < ng < - - - such that L, (f(x0)) — f(zo).
Proor. First we prove that there exists a sequence if integers m1 < np < - ..

such that | T, (20) | < %s. We need the following

Lemma 6, If oy # ?-], p =g = 1 (mod 2), then the inequality
q

| —
‘ _2r—1 ‘ " c_1;
2ny ne

has an infinite number of solutions.
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Proor. If xyis rational it is of the form ar = l, thus the Lemma is trivial.

Ty
Hence we may suppose that 2, is irrational. It is well known that the equa-

1 : ; - sy
<@ has an infinite number of solutions. If infinitely many of

the b’s are even the Lemma is proved, if not consider the least positive solution of

u a
tio ——
llll:to b

2ad — bf = 1.
Obvicusly f = 1 (mod 2) and d < b thus

e
2d

1 1 C14
ptom <@

IIA

1
|
I,T-o_

which proves the Lemma.

2r — 1
2??.;:

¢
< —1; we have

My

|
If Ty —

T, (z0) < cos (T—r — f35) 25
2 n

% T
2r—1

N

Consider now a sequence of integers ny < ns < ... with |20 — <

ci;. We are going to prove that L, (f(z)) — f(2).
ny
For k = r we have

Y T (1'0) | Ciz [
elzo) | = | 77— 22— < | |-
| Telao) | T e (@ — 7o) | !w(.n = |
Thus
C13 1 . 9
2 ) | < 5 2 =1 = oW,
hence from
E Lkiz) =1
=1
? We have
Z 1 _ ’ 1
i BT ) STlegmy—t | T — ol
¥ - = 2
+ liz‘k_‘%?«’.'mlogxn+c1r'.=l|:|g1r.‘. o(n2).

|zp—=g| > (logn)~

(The dash indicates that k = » is omitted.)
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it follows that
Lzg) =1 — o(1).
Thus

L., (f(z)) = fz)l (o) + ;f(xk)lk(xo) = (f(z) + 1 — 0o(1)] + o(1) — flzo),

which proves Theorem 2.
On the other hand we can prove that for every z in (—1, +1) there exists a
continuous f(z) such that

2 La(f(x0)

lim mIn

i =00

[~ « I

The proof is very similar to that of Theorem 1.

Princerow, N. J.
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