
(1)

then

(4)

	

c f c 2 (1 - d) "2 .

Equality holds only for f (x) =1-x2 , a = - (1-d) 1 / 2 .
Suppose there exists a polynomial of degree n > 2 satisfying (1)

with cf >= 2(1-d) 1 / 2 ; then we will prove that there exists a polynomial
of degree n-i with cf > 2 (1 - d) 1/2 ; and this proves (4) since it is easy
to prove that (4) is satisfied for polynomials of second degree, that
is, for 1-x 2 .

Denote the roots of f(x) by x1 = -1, x2 =1, x3 , x,, and suppose
first that for i> 2 the xi are not all of the same sign . Let x,, be the larg-
est positive root and x,,-1 the smallest negative root, and denote by y
the root of f' (x) in (-1, +1) . Consider the polynomial of degree n

NOTE ON SOME ELEMENTARY PROPERTIES OF
POLYNOMIALS

P. ERDÖS

In a previous paper T . Grünwald1 and I proved that if f (x) is a poly-
nomial of degree n ? 2 and satisfies the following conditions

all roots of f(x) are real, f(- 1) = f(+ 1) = 0,

f(x)50 for -1<x<1, max f(x) = 1,
-1<x<1

then
+1

	

4
(2)

	

J

	

f(x) < 3 .1

Equality occurs only for f(x) =1-x2.
This result can be generalized as follows : Suppose f(x) satisfies (1)

and let f (a) =f (b) =d =<1, -1 <a < b < 1 ; then

(3)

	

b - a < 2(1 - d)1i2 .

Again equality occurs only for f (x) =1-x 2 . It is clear that (2) follows
from (3) by integration with respect to d .
PROOF. Instead of (3) we prove the following slightly more general

result : Let f(x) satisfy (1), and determine the greatest positive con-
stant cf such that

f(a)f(a + cf) = d2 , - 1 < a < a + cf < 1 ;

1 Annals of Mathematics, (2), vol . 40 (1939), pp . 537-548 .
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O(x) =
c	

f(x) (x - y) 2

(x - xn) (x - xn-1)

where we choose c so that O(x) >_ 0 for -15 x :!-< 1 . Then it is easy to
see that for large x, q5(x) and f (x) have opposite signs. Thus their
leading coefficients have opposite signs . Hence it is possible to choose
c such that the polynomial F(x) =f (x) +q5(x) is of degree n -1 . Since
n - 2 of its roots are real it can have only real roots, and since
F'(y) =0, F(y) =1, it follows that max_ 1< x<1 F(x) =1 . Thus F(x) satis-
fies (1) (obviously F(x) X0 for -1 <x < 1) and F(x) >_ f(x) in -1, +1,
equality occurring only for -1, y, +1 . Thus cF>cf. Hence we may
suppose that for i > 2 all the xi are of the same sign ; without loss of
generality we may suppose them negative . Suppose that

f(a)f(b) = d2 ,

	

b - a = cf.

We can suppose that -1 < a < y < b < 1 . We now prove that

b-y<y-a.

I f'(b) I > I f(a) I ,

	

f(b) < f(a),

n-2

(b - y)~ (b - yi) ,

	

fi (a) _
i=1

-
f1(x) = c x

xri
AX),x - xn

n-2

(y - a) Il (yi - a)
i=1

y>yi, i=1,2,---,n-2,

where b - y > y -a and all other factors in If(b) I are greater then the
corresponding factors in f'(a) . This proves the first inequality of (6) .
To prove the second inequality we remark that from what has just
been said it follows that for u1- y = y -U2, -1 <U2 < y <U1 < 1, we have

I fl(u1) I > I fl(u2) I ,

and since b -z >_ y -a the second inequality follows by integration .
By simple calculation it follows from (6) that

f (b - e) f(a - e) > f(a) f (b,) = d2 ,

	

e > 0 sufficiently small .

Thus b-a<cf. This contradiction proves (5) .
Let xn be the root of f (x) with greatest absolute value . Consider

the new polynomial

xn' = xn - 8,5> 0,



where c is chosen in such a way that max_ls xsi f1 (x) =1 . Then we
prove

(7)

	

ct, >^cf.

To show (7) it will suffice to show that cf is an increasing function of
x,I . Choose S so small that if we denote by y (l ) the root of fl' (x) in
(-1, +1) we have b-yl<yl-a (it is clear that yl<y) .
Put now

1

and
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f(yi) xn-s- yl

(Evidently cfl(x) satisfies (1) .)
Now

c=

a - xn -{- S b - xn -}- S
c 2f1(a)fl(b) = c2		f(a)f(b)a -- xn

	

b - xn

S

	

S

	

1

	

2

> 1 +

	

1 a

	

xn

	

-}-

b

	

xn

	

1 + S/yl - xn)

f(a)f(b)
-

	

-

(that is, f(y1 ) < 1) . But from (5) we have

1

	

1

	

23
S

	

+

	

>
a - xn b-xn a+b

	

> yl - xn

Thus

32

	

52

	

S2

(a - x,,) (b - x,,)
>

c2f1(a)f1(b) > f(a)f(b) = d 2 .

Hence (7) is proved.
If I xnj tends to infinity f(x) tends to F(x) =f(x)/(x-xn), which is

of degree n-1 . From (7) it follows that c F >cf, which proves the
theorem .

Let f (x) be a polynomial of degree n all the roots of which are in
the interval (-1, +1) ; and further let max i< x <_ 1 (f(x) I =1 . For which
polynomial is

+

J

	

I f(x) I
i

23

2
	 - xn

>
(y1 - xn) 2
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maximal? I was not able to answer this question but it seems very
likely that the maximum is reached for f (x) = Tn(x/c), where c =1/xn ,
and xn is . the greatest root of T,,(x) (the nth Tchebicheff polynomial) .
Hence Tn (1/c) =Tn(-11C)= 0 and all other roots of Tn (x/c) are in
(-1, +1) . It is easy to see that Tn (x) satisfies the following condi-
tion : Let xi and xi+1 be two consecutive roots of T,(x) ; then

1
xi+l - xi zi

T.,,(x) = dny

where do is independent of i, and lim d,,=2/r.
This fact suggests the following conjecture which is a generalization

of the previous one : Let f (x) be a polynomial of degree n all the roots
of which are in ( -1, + 1), such that max_1 :g 51 If (x) I =1 and let xi
and xi+l be two consecutive roots of f (x) ; then

xiJ

	

I .f(x) I = dn(xi+1 - xi) .

Equality holds only for Tn (cx) .
It seems very likely that the following result holds : Let cá(9) be

a trigonometric polynomial all the roots of which are real, further let
maxo~V52r 10(e) I =1. Then

2u

fo I <P(0) I <_ 4.

Let f (x) be a polynomial of degree n with leading coefficient 1 and
all roots in (-1, + 1) ; then the sum of the intervals in (-1, + 1) for
which If(x) I >=1 does not exceed 1 . The proof is quite simple . Evi-
dently

n
f(x)f( - x) _ H (x2 - x2) < 1

	

for 1x1 <= 1,
i=1

equality occurring only for x = 0, 1 xi I =1 . Thus one of the numbers
f (x) or f (-x) is less than 1, which establishes the result . It is also
easy to see that if the sum of the intervals in question is exactly 1
then f(x) _ (1 ±x) n. It would not be difficult to prove the following
slightly more general result : Let f (x) have leading coefficient 1 and all
roots in (-1, +1) ; then if -1 < a < 0 < b < 1 at least one of the num-
bers If(a) I or I f (b) I is less than 1 . These problems become very much
more difficult if instead of the interval -1, + 1 we consider the unit
circle. The question would be to determine the polynomial (or poly-
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nomials) of degree not greater than n with leading coefficient 1 and
all roots in the unit circle such that the area of the set of points for
which I f(x) I >=1 shall be as big as possible . A first guess would be
f (x) _ (x -a) n, I a I =1, but it can be shown that for sufficiently large n
this is not the case . The complete solution of this problem seems diffi-
cult .
Mr. Eröd2 proved that there exists a constant c independent of n

such that for a polynomial of degree n satisfying the above conditions
the area of the set of points for which I f(x) I <_ 1 is not less than c .
The best value of c is not known .

INSTITUTE FOR ADVANCED STUDY

2 Oral communication .
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