NOTE ON SOME ELEMENTARY PROPERTIES OF
POLYNOMIALS

P. ERDOS

In a previous paper T. Griinwald! and I proved that if f(x)is a poly-
nomial of degree # =2 and satisfies the following conditions:

all roots of f(x) are real, f(— 1) = f(+ 1) = 0,

) f(x) %0 for —1<x<1, max f(z) =1,
—-1<2z<L1
then
+1 4
2 e |

Equality occurs only for f(x) =1—x2.
This result can be generalized as follows: Suppose f(x) satisfies (1)
and let f(a) =f(b) =d =1, —1<a<b<1; then

3) b—a <201 — d)e

Again equality occurs only for f(x) =1—x2. It is clear that (2) follows
from (3) by integration with respect to d.

Proor. Instead of (3) we prove the following slightly more general
result: Let f(x) satisfy (1), and determine the greatest positive con-
stant ¢; such that

fla)fla+¢) =d*,, —1<a<a+¢<I;
then

(4) ¢ < 2(1 — d)Ve.

Equality holds only for f(x) =1—x2, a= —(1—4d)"2.

Suppose there exists a polynomial of degree n>2 satisfying (1)
with ¢;=2(1 —d)Y?; then we will prove that there exists a polynomial
of degree n —1 with ¢;>2(1 —d)'/2; and this proves (4) since it is easy
to prove that (4) is satisfied for polynomials of second degree, that
is, for 1 —x2.

Denote the roots of f(x) by x;=—1, xs=1, x3, - - - , ¥, and suppose
first that for 2> 2 the x; are not all of the same sign. Let x, be the larg-
est positive root and x,—; the smallest negative root, and denote by y
the root of f' (x) in (—1, 4+1). Consider the polynomial of degree »
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f(2)(x — 3)?

(% — 2)(% — Fna)

¢(x) = ¢

where we choose ¢ so that ¢(x) =20 for —1=x=<1. Then it is easy to
see that for large x, ¢(x) and f(x) have opposite signs. Thus their
leading coefficients have opposite signs. Hence it is possible to choose
¢ such that the polynomial F(x)=f(x)+¢(x) is of degree n—1. Since
n—2 of its roots are real it can have only real roots, and since
F'(y) =0, F(y) =1, it follows that max_;<.<1 F(x) =1. Thus F(x) satis-
fies (1) (obviously F(x)#0 for —1<x<1) and F(x) 2f(x) in —1, 41,
equality occurring only for —1, y, +1. Thus ¢r >¢;. Hence we may
suppose that for 2>2 all the x; are of the same sign; without loss of
generality we may suppose them negative. Suppose that

f(a)f(b) = a2, b— a=c.
We can suppose that —1<a<y<b<1. We now prove that
(5) b—y<y—a
For if not then
(6) 7@ > @], 0 < fa),
that is,

n—2

7@ = (b—y>II<b—-y.-)|, If’<a>l=\<y—a)”f1(y.-—a>,

=1 =1
y>y'5i i=112s"'!""—21

where b —7y =y —a and all other factors in | b i (b)] are greater then the
corresponding factors in f’(a). This proves the first inequality of (6).
To prove the second inequality we remark that from what has just
been said it follows that for uy—y=y—us, — 1 <ua <y <u; <1,we have

FUCVIRSFUCOIP

and since b—z=vy —a the second inequality follows by integration.
By simple calculation it follows from (6) that

f(b — &)f(a — € > f(a)f(b) = d? e > 0 sufficiently small.

Thus b—a<c;. This contradiction proves (5).
Let x, be the root of f(x) with greatest absolute value. Consider
the new polynomial

X — %, y
fl(x)=cx_xf(x), Xa = Xp — 8,86 > 0,
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where ¢ is chosen in such a way that max_j<.<; fi(x) =1. Then we
prove

() ¢y >0

To show (7) it will suffice to show that ¢, is an increasing function of
|x,.| . Choose 8§ so small that if we denote by y¥ the root of f{ (x) in
(—1, +1) we have b—y:<y1—a (it is clear that y; <7y).
Put now
I 1 Xn — M1
c= ’
J(n) xn—08— 3

(Evidently ¢fi(x) satisfies (1).)
Now

— Xp 6 b— x, b
AR gt = 2 = G W )

a — X, b — x,

S o= Rl /;1 - x”)gf(a)f(b)

(that is, f(y1) <1). But from (5) we have

1 1 26 26
) ( -+ > >
a— Xn b — x, (a—{-b ) Y — Xy
— Xn
2
and
82 52 52
> > .
(@ — 2,)(b — xn) (a + b )2 (y1 — x)?
— X
2
Thus

*f1(a)f2(b) > f(a)f(b) = d*

Hence (7) is proved.

If |x.| tends to infinity f(x) tends to F(x)=f(x)/(x —x,), which is
of degree n—1. From (7) it follows that ¢r>¢;, which proves the
theorem.

Let f(x) be a polynomial of degree » all the roots of which are in
theinterval (—1,+41);and further let max_;<.<: | f(x) i =1. For which

polynomial is
+1
[l
-1
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maximal? I was not able to answer this question but it seems very
likely that the maximum is reached for f(x) = T'»(x/c), where c=1/x,,
and x, is the greatest root of T,(x) (the nth Tchebicheff polynomial).
Hence T,(1/¢)=T.(—1/c)=0 and all other roots of Tx(x/c) are in
(—1, +1). It is easy to see that T',(x) satisfies the following condi-
tion: Let x; and x;.1 be two consecutive roots of T',(x); then

1 zit+1
Lasl eiel f | Tola) | = da,
4

Xiy1 — ¥

where d, is independent of ¢, and lim d,=2/m.

This fact suggests the following conjecture which is a generalization
of the previous one: Let f(x) be a polynomial of degree # all the roots
of which are in (—1, +1), such that max_;<.<; |f(x)] =1and let x;
and x;,1 be two consecutive roots of f(x); then

[ 1@ 5 dutais = 2.

Equality holds only for T,(cx).

It seems very likely that the following result holds: Let ¢(6) be
a trigonometric polynomial all the roots of which are real, further let
maxo<e<er lqb(@)l =1. Then

f:”|¢(e)| <4

Let f(x) be a polynomial of degree » with leading coefficient 1 and
all roots in (—1, 41); then the sum of the intervals in (—1, +1) for
which |f(x)l =1 does not exceed 1. The proof is quite simple. Evi-
dently

f@f- 0 =Tl -a) st for|s|=1,

equality occurring only for x=0, |x; | =1. Thus one of the numbers
f(x) or f(—x) is less than 1, which establishes the result. It is also
easy to see that if the sum of the intervals in question is exactly 1
then f(x) =(1+x)". It would not be difficult to prove the following
slightly more general result: Let f(x) have leading coefficient 1 and all
roots in (—1, 4+1); then if —1<a<0<b<1 at least one of the num-
bers I f(a)] or | f(b)l is less than 1. These problems become very much
more difficult if instead of the interval —1, +1 we consider the unit
circle. The question would be to determine the polynomial (or poly-



958 P. ERDOS

nomials) of degree not greater than » with leading coefficient 1 and
all roots in the unit circle such that the area of the set of points for
which | f(x)l =1 shall be as big as possible. A first guess would be
f(x)=(x—a)", I a| =1, but it can be shown that for sufficiently large »
this is not the case. The complete solution of this problem seems diffi-
cult.

Mr. Erod? proved that there exists a constant ¢ independent of n
such that for a polynomial of degree 7 satisfying the above conditions
the area of the set of points for which | f(x)] =<1 is not less than c.
The best value of ¢ is not known.

INSTITUTE FOR ADVANCED STUDY

? Oral communication.




	page 1
	page 2
	page 3
	page 4
	page 5

