ON THE DENSITY OF SOME SEQUENCES OF NUMBERS: III

Pavrn. ErpOs*.

[Extracied from the Journal of the London Mathemaiical Society, Vol. 13, 1038.]

The functions f(m) and ¢(m), where ¢(m)> 0, are called additive
and multiplicative respectively if they are defined for non-negative
integers m and if, for (m,, my)=1,

S(mymy) = fmy)+f(msy),
p(mymy) = (my) . (ms).

The first question is under what conditions does the density of the
integers for which f(m) [or ¢(m)] is not less than ¢ exist, for any given e.
If we denote this density by (e), the second question is, under what
conditions is ¢(c) a continuous function of e. We shall call the function
() the distribution funetion of f(m).

Since the logarithm of a multiplicative function is additive, it will be
sufficient to consider additive functions only.

So far as I know, the first paper on this subject is due to Schoenberg,
who proved (among other results) that ¢(m)/m, where ¢(m) is Euler’s

* Received 30 Angust, 1937; read 18 November, 1937.
+ I. J. Bhoenberg, " Uber die asymptotische Verteilung reeller Zahlen mod 1 ", Math.
Zeitschrift, 28 (1928), 171-200.
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function has a continuous distribution function. Later Davenpott*
proved the same for o(m)/m, where o(m) denotes the sum of the divisors
of m, i.e. he proved that the density of the abundant numbers exists.
Some time ago Schoenberg published some new and general resultst,
which included all previously known results. He proved the following
theorems: Let an additive funetion f(m) satisfy the condition that

s [L/(@)]]
» P
converges, where | |x|| =min (1, |x|). Then

1. The distribution function of f(m) exists.
2. If f(m) satisfies the supplementary condition that there exisis an infinite
sequence of primes py, P, ... with f(p,) #[f(p,) for p+v and such that

o g g i o :
X — diverges, then the distribution function is continuous.

v=1 Hv

3. If, on the other hand, X —;El; converges, the distribution function is
fip)#0
purely discontinuous.

In his proofs Schoenberg used the theory of Fourier transforms.
Independently of Schoenberg I have proved by elementary methods
the following results].

(i) Let the additive function f(m) satisfy the following conditions:
(1) f(m)=0.
(2) f(p1) #S(@e)-
(3) %Hf%“ converges.

Then the distribution function of f(m) exists. Implicitly I also proved
that the distribution funetion is continuous.

(i) If f(m) =0 and X I Enp): diverges, then, for every ¢, f(m) > ¢ for
»

almost all m§.

* H. Davenport, “{ber Numeri Abundantes”, Sitzungsberichte der Preussischen
Akademie, Phys. Math. Kiasse (1933), 830-837.

1 I. J. Schoenberg, * On asymptotic distribution of arithmetical functions ”, T'rans.
American Math. Sec., 39 (1936), 315-330. This paper was presented to the Society on 31
March, 1934,

+ P, Erdés, ** On the density of some sequences of numbers ™, Journal London Math.
Soc., 10 (1933), 120-125. This paper will be referred to as I.

§ This result is also proved in Schoenberg’s paper previously quoted,
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In a second paper* (referred to in the following as II) I have proved
the following results:
(i) Let the additive function f(m) satisfy the following conditions :
fim) =0,
= |fg’) | converges ;

r

then the distribution function of f(m) exists.

(ii) If f(m) satisfies the following supplementary condition :
1 y
% — diverges,
fim#o P

then the distribution function is continuous. This result is not stated
explicitly. This result together with the third result of Schoenberg gives
a necessary and sufficient condition for the continuity of the distribution
function in the case f(m) = 0.

In the present paper I prove the following generalization of Schoenberg’s
and my own results:

(i) Let the additive function f(m) satisfy the following conditions:
(@) Z UL}‘?;)LL converges,
r

where || f || denotes f(p) for | f(p)| <1 and 1 for | f(p)|>1,
(b) )3[ f(;)) : converges ;
»

then the distribution function of f(m) exists.

(ii) If the additive function satisfies the supplementary condition
1 ;
(¢c) X — diverges;
fim#0 P
then the distribution function is continuous.
(i) I = | converges, the distribution function is purely dis-

fip#o P
continuous.

* P, Erdés, “On the density of some sequences of numbers: I1”, Journal London
Math. Seoc., 12 (1937), 7-11.
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It is easy to see that this result contains the result of Schoenberg as
well as my own [except (ii) of I].

The proof is elementary and very similar to the argument used in
I and II.

3 .o ; : :

First suppose that X s converges. This ease is settled as in I1.

Tip)=0 g
Denote by a,. a,. ... the integers composed of the primes p for which

! 1
£, Evidently ¥ — — ——— CONVCrges.
flp)# vidently X & gk T—1p converges

Denote by a(m) the greatest @; contained in m. Nince I—f,i.._le con-
verges, an application of the sieve of Eratosthenes shows that the density
of integers not divisible by any p with f(p) 3£ 0 is equal to l!_q (1— 1—1):) .
Hence the density of the integers m for which a(m) = a; is m

v

.
N e
%

Finally, since I 1/a; converges, the density of the integers for which
f(m) = cis equal to 11 (1——1-} z -, ; thus the distribution function
fpr=0\ P flanze
exists. It is clear that its points of discontinuity are the values f(a;).
Thus it is purely discontinuous, and this proves (iii).
Let us now suppose that X L diverges.
fim=o P
We denote by N(f: ¢, d) the number of positive integers nob exceeding
n for which
¢ <f(m) <d,

where ¢, d arve given constants [when d — oo we write N(f: ¢)].
As in I and IT it is sufficient to consider the special case f(p*) = f(p)
for any e, so that

fm)= Z f(p).

Bl

Consider also the function

fulm) = X f(p).
#lm
Pk
We show that N(f.; e¢)n tends to a lmit. For, if we denote by
A,, A,. ..., 4; the integers whose prime factors are not greater than £ and
for which also fi(4) = ¢, we obtain the integers m < n for which f,(m) =¢
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by taking all the multiples of A, A4, .... 4; not exceeding ». Hence
N(f,.: e)/n tends to a limit.

To prove the exisience of N(f; ¢)/n 1t is sufficient to show that for
oveiy e >0 a [, exists so great that, for every k>£k, and n > n(e),
\N(f: e)—N(f,: ¢)|jn < e. This will be the case if the number of integers
m <~ u for which fi.(m) < cand f{m) =e¢ or fi.(m) =¢ and f(m) < c is less
than <.

We require three lemmas.,

Levivia L. Led ihe wilditive funciion fm) satisfy the conditions (a) and

(). Tar nuwdor of integers w -“a for which
| S(m)—f(m) =8
is then less than Len for k> ky(e, 8) and n > ny(k, €, 3).
Preof. We divide the integers m <Zn for which |f(m)—f,(m) > & into

two classes. In the first class are the integers divisible by a prime p > £
with 'f(p)| = 1. and in the second class all other integers. From (b) it

” 1 Gy
foliows that X ; converges : hence the number of integers m <<n of
Fim| =1

the first class iz less than

. (L.
X —<len
p>k 'P

fp)l =1

for sufficiently large 1.
For the integers of the second class we evidently have

) Jim)
- ¥ ey B S N / [’ 14
< I f(p) [p =, f(p)f(;)[, }

p=i g
fimi=1 iy LI fladl =1

s WP, 5 2@, v (gpra)

Pk P pEq=k g prg=k
[Fiprl=1 pR=n D=
[ fiml | fip <1 {fimlifimi=<1

where X7 means that the summation is extended only over the m's of the
sccond class,

Now

2 oz ARz Ay, s M) s S
pgk P4 vazp=k P n=p=an P oapze=k 4 ’
s I fipil<1 [ fipyl<1 Ifipl<l

[ fip Al <1
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but, from (a) and (b),

n'zg>k
|flgy]<1

flg)
= —q'—L<T]

for any fixed % > 0, and all " if £ is sufficiently large, so that

2 Y M<n2+2ﬂ 3 -1—<G'q, (]_]

p=g=k Pq n>p>vn
pPgEn
L)l Iflg) =1
. « 1
since L e
RNEPEVH P
(The ¢’s denote absolute constants, not necessarily the same.)

Thus finally from (b), (1) and from the fact that the number of integers
of the form pg not exceeding = is o(n), we get

53 [fim)—fi(m)]? << fed*n+tcnnto(n) < }ed®n.
m=1

Thus the number of integers of the second class is also less than }en; and
the lemma is proved.

Lumuya 2. Lel the additive function f(m) satisfy (a), (b), and (¢), then for
cvery € >0 there exists a & = 0 such that

N(f: ¢—0, c+8) < en.

Proof. We divide the integers m < # for which ¢—38 < f(m) <{c¢+-3 into
two classes, putting in the first those for which | f(m)—f.(m) > 8, and in
the second class the others. By Lemma 1, the number of integers of the
first class is less than len. For the integers of the second class,

c— 20 = fi.{m) <c+25;

hence we see that Lemma 2 will be proved if we can show that the number
of integers m <<, for which ¢—23 < f;.(m) <c-+28, is less than len for
sufficiently large L= k(¢) say.

Since X % diverges, we may suppose without loss of generality that
Jip)#0

z X diverges.
=0 P
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We now denote
(1) by g; the primes less than or equal to £, for which f(g;) > 48,
(2) by r, the other primes less than or equal to k,

(3) by o the square-free integers composed of primes less than or equal to k&
for which ¢—28 << f(a) < ¢+ 28,

(4) by By, Ba ... the square-free integers composed of the g,
(3) by vy, s ... the square-free integers composed of the r;,
(6) by d.(m) the number of divisors of m among the a,
(7) by d,(m) the number of divisors of m among the y,

(8) by dj(m) the number of divisors of m among the square-free integers
composed of primes less than or equal to 4.

Now choose 8 so small and % so large that

1
X — > B = B(e),
. (9

i

where B is sufficiently large. This is evidently possible since A
fm>o0 P
diverges.
We then prove
Lenvma* 3. z ?l < e logk.
Proof. We evidently have
M ] ]
S d()=3 E] sz (1)
i=1 wi L& ai &
M
We write Y d()=XZ,+%,,
=1

where X, contains the I's having less than B divisors amongst the g;, and
%, all the other I's.

Then
1
ax M 1 m(1+)
S, <28 % d () =285 [-—] <M (14 =) =mgmesin P
I=1 W L ri T I (H__l)
qi QI

28 o
< M2 logk a1 togh

for sufficiently large B = B(e) say.

* This Lemma is proved in II.
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We now estimate I,.
Let I be an integer of Z,; then, if B=q,¢,...¢,. r =7 75...7,,

= [3*/!,

where @ = B and ¢ is composed of primes greater than L and the factors of
By-

We estimate d,(l) as follows.

Any a|l is of the form a = g;y;, where §| 8. v, .

The 8/ s belonging to the same g, cannot divide one another, for if we
had a; =8y, ay= .y, and B; B, then

48 = flag)—[(ay) = f(Bs) —f(By) > 49,

an evident contradiction. From a theorem of Sperner® it follows
immediately that a set of divisors of the product ¢, ¢, ... ¢,, of which no
F x

one is divisible by any other has at most |

kY
elements.
2]/

Further, from Stirling’s formula
2m)inrtiem <n! L (2m)inntiegnel,

we casily deduce that

=) =2t By
Qx+y d. (I
so that d.(0) S—pr < g(g)
Hence
2 ()
M SR M : 1 cM loghk
- N = i=1 b e ol e g 33 v [
Ty< ) <Hp—<p 1L (1 o) S <M logl
for sufficiently large B

Finally, from (1),

o1
L — <2 logh+1 < eloghk:
oy
and so Lemma 3 is proved.

We now prove Lemma 2, as follows.

* Sperner, * Ein Satz iber Unfermengen einer unendlichen Menge ”, Math. Zeitschrift,
27 (1928), H44-548.
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We divide the integers m < n for which ¢—28 <{f.(m) < ¢4-28 into two
classes. In the first class are the integers for which m is divisible by a
square greater than 1/¢, and in the second class the other integers. The
number of integers of the first class is evidently less than or equal to

Z % < ce?n.
r>1/2 T
The number of integers of the second class we estimate as follows. We

write K(m)= Il p. Since ¢—28 < f (m)=f[K(m)] <c+25, K(m) is
p<k
plm
evidently an a. The integers m of the second class for which K(m)= q;
are of the form a;ut. where p is composed of the prime factors of a; and ¢ is

composed of primes greater than k. m is divisible by a square greater

than or equal to p; for if p=pfp3e.. piP* ..., m is divisible by
piapde,.. p¥t2 ... Therefore p < 1/e!. Hence it easily follows from

the sieve of Eratosthenes that the number of integers m of the second
class for which K(m)= q; is less than or equal to

/ 1 b |
en 1 Kl—*—) pe it —
p<k Ve M.
a;

Hence the number of the integers of the second class is less than or equal to

en Il (1——1—) z 1, b . < cne? log ~lz < len;
psk P O w1t B =
this proves Lemma 2.
We now prove the existence of the distribution function of f(m).
We divide the integers not exceeding n satisfying the two conditions

felm) <e, f(m)=c

into two classes. In the first class we put the integers m for which
f(m)=c-+3. For these, f(m)—f.(m)=>3, and so, from Lemma 1, their
number is less than Jen. In the second class. we put the integers for which
f(m) <c-+3. Their number is less than }en from Lemma 2. Similarly
for the m for which f (m) = ¢, f(m) <ec. Thus the existence of the distri-
bution function is proved.

It is evident that the distribution function is a non-increasing function
of ¢, and so its continuity is an immediate consequence of Lemma 2. This
completes the proof of our result.

University of Manchester.
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