
ON THE DEMTTT OF SONE SEQUEXCES OF YUiMBERS: III 

The functions f(m) and $(m), where 4(m) > 0, are called addit’ive 

and mult~iplicat~ive respectively if they are defined for non-negative 

integers m and if? for (m,, m,) = 1, 

The first question is under what conditions does the densit,y of the 
int)egers for which f(m) [or (p( m )] is not less than c exist, for any given c. 

If we denote this density by I)(C), the second question is, under what 

comlitions is x/f(c) a continuous function of c. We shall call t,he function 

#(c) t,he distribution funct,ion of f(,nz). 

Since the logarithm of a umlOiplicative function is addit.ive, it will be 

sufficient to consider additive fun&ions only. 
So far a.s I know> the first paper on this subject is due to Schoenberg?, 

who proved (among other results) that #(nz)/m, where $(m) is Euler’s 

* Received 30 August, 193’i; read 18 November, 1937. 

t I. J. Shoenberg, ‘. I?ber die asymptotische Verteilung reeller Zahlen mod 1 “, &f&h. 
,Z&schrift, 28 (1928), 171-200. 
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function has a continuous distribution function. Later Davenpoft* 
proved the same for cr(m)‘m. where m(m) denotes the sum of the divisors 

of m, i.e. he proved that the density of the abundant numbers exists. 

Some time ago Schoenberg published some new and general results?, 

which included all previously known results. He proved the following 

theorems : Let an additive function f(m) satisfy the condition that 

1. The distribution function of f(m) exists. 

2. If f(m) satisfies the supplementary condition that there exists ani??finite 

sequence of primes PI, p,, . . . with f(p,) + f (py) for p f v and such that 

z -!- diverges, then the distribution function is continuous. 
v=l P” 

3. If, on the other hand, C -!.. 
fb)fO P 

converges, the diskibution function is 

purely discontinuous. 

In his proofs Schoenberg used t,he t#heory of Fourier transforms. 
Independently of Schoenberg I have proved by elementary met,hods 

the following results t. 

(i) Let the additive function f(m) satisfy the following conditions : 

(1) f(m) 2 0. 

(2) f (PI) +fh). 

(3) z I If(P)U converges. 
P P 

Then the distribution function of f(m) exists. Implicitly I also proved 

that the distribution function is continuous. 

(ii) If f(m) >, 0 and X v diverges, then, for every c, f(m) > c for 
P 

almost all m$. 

* H. Davenport, ” ‘iiber Numeri Abundant.es “, Sitmngsberichte der Preussisehen 
Ak&@?zie, Phys. Math. KEasse (1933), 830-837. 

7 I. J. Schoenberg, “ On ssympt’otic distribution of arithmetical functions “, Trans. 
hnerican Math. sot., 39 (1936), 313-330. This paper was presented to the Society on 31 

March, 1931. 
$ P. ErdBs, “ On t,he den&y of some sequences of numbers “, .Jownal 3mdm X&h, 

sot., 10 (1935)j 120-125. This paper will be referred to as I. 
5 This result is also proved in Schoenberg’s paper previously quot.ed, 
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ln a second paper* (referred to in the following as II) I have proved 

the following results : 

(i) Let the addit ive fun&ion f(m) sat$isfy the following conditions : 

f(m) Z 0, 

1z; llf(P)ll 
P P 

converges ; 

then the distribut,ion function of f(m) exisk. 

(ii) If f(m) satisfies the following supplementary condition: 

I; 1 diverges, 
fCP)f0 P 

t,hen the distribution function is continuous. This result is not stated 
explicitly. This result together with the third result of Schoenberg gives 

a necessary and sufficient condition for the continuity of the distribution 
function in the case f(m) 3 0. 

In the present paper I prove the following generalization of Schoenberg’s 

and my own results : 

(i) Let the additive function f(m) satisfy the following conditions: 

(a) x !l!!tLPu converges, 
P P 

where jlfjl’ d enotes f(p) for /f(p) j < 1 and 1 for if(z))/ > 1, 

(0) x MPN” converges ; 
P P 

then the distribut’ion function of j(m) csists. 

(ii) If the additive function satisfies the supplementary condition 

cc> ZZ ?- diverges; 
f(P)#O P 

then the distribution function is continuous. 

(iii) If C 1 
f(P)fO 9 

converges, the distribution function is purely dis- 

continuous. 

* P. Erdijs, $‘ On the density of some sequences of numbers : II”, Journal London 
Math. sot., 13 (19371, 7-11. 
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It is easy to see that t’his result cont’aina t,he result of Schoenberg as 

well as my own [except’ (ii) of I]. 
The proof is elementary a,nd very similar to t,he argument used in 

I and II. 

1 
First suppose t,ha’t \’ .- converges. 

1cp;o P 
‘This case is sett,!ed a,s in I.I. 

Denote by u.,, G2, . * . the integers composed 0’ the primcb 1) for ~vhich 

Denote by a(m) the great,& CQ conta.ined in w:.. Since 
1 

S - con- 
fipi :s 0 1' 

verges: an application of the sieve of Eratost,henes shoj\-s t*hnt t,he density 

of int,egers not divisible by any 1~ with f(p) $0 is equal t.of ,tI-, (I- $!. 
c -i’ 

Hence t’he den&y of t,he integers ~YZ for which am = r+ is 

Finally, since S l,:‘rri converges, the densit,y of the integers for which 

f(m) 2 c is equal to 1.1 1-L 5 l. 
c i 

- ; thus the distribution fun&on 
f(Pif0 p .T j(n;j>zc uj 

exist,s . It is clear that its points of diwontinuity are the values S(ai). 

Thus it, is purely discontinuous, a.nd this proves (iii). 

Let us now suppose Dhat, v 
1 

f~.P;if 0 -5- 
diverges. 

We denot,e by N( f; cP d) t,he number of 1)ositive integers net esceeding 

7% for which 

c sJ(7r2) <d, 

where c: CZ are given const’ants [when d = a= n-e -r\-rit,e .X(f; c)]. 
As in I and II it is sufficient to consider t,he special case f( p”) = f@) 

for my Q, so tha’t 

f(m) = ,,?,& f(P)* 

Consider a,lso the function 

We show that X(3pl;; c)/‘z tends to a limit. For, if we denote 1)~ 

4, 4, . . . , Aj the integers whose prime factors are not greater than 1; and 

fbr which also fkf.4J > c, we obtain the integers m < YJ, for which fk(m) >c 
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but, from (u) and (b), 

I). ERDO; 

for a,ny fixed 7 > 0, and all 72’ if k is sufficiently large, SO that 

2 I; f(P)f M 
Pq 

< 712+2rl (1) 
phq>k 
P&n 

If(P) I, If(P) I < 1 

since 

(The c’s denote absolute constants, not necessarily the same.) 

Thus finally from (b), (1) and from t’he fact, that the number of integers 
of the form pq not exceeding n is o(n), we get 

Thus t’he number of integers of t’he second class is also less than i~n; and 
the lemma, is proved. 

LEMMA 2. Let the additire fun&m f(m) satisfy (a), (b), rind (c), then for 

ecery E > 0 th.ere exists a 8 > 0 such that 

N(f; c-s, c+q < En. 

Proof. We divide Dhe integers m < n for which c-8 <f(m) < cf6 into 

two classes? putting in the first those for which / f(m)-fk(m) j > 8, and in 

the second class the others. By Lemma 1, the number of integers of the 

first class is less than +n. For t’he integers of the second class, 

c-26 &f&t&) <c-/-26; 

hence we see that Lemma 2 will be proved if we can show that the number 

of integers m <n, for which c--36 <fk(m) <c-+26, is less than 7&n for 

sufficiently large E = r%(c) say. 

Since IZ -!- diverges, we may suppose wit,hout loss of generality that 
f(P)fO P 

Z: A- diverges. 
(P)>O P 
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We now denote 

(1) by qi the primes less than or equal t,o k, for which j(qi) > 46, 

(2) by ri t,he other primes less than or equal to k: 

(3) by ai the square-free inkgers composed of primes less than or equal to k 

for which c-26 <j(a) <c+ZS, 

(4) by A, Pa, . . . the square-free integers composed of t.he qi, 

(5) by ~1, yz: .-a the square-free integers composed of the ri, 

(6) by da(m) the number of divisors of m among the ai, 

(7) by d,(m) the number of divisors of m among the yiyi, 

(8) by d,(m) th e number of di-visors of m among the square-free integers 

composed of primes less than or equal t,o 1. 

Now choose 8 so small and k so large that 

c -$ > B = B(E), 
E 

where R is sufficiently large. This is evident,ly possible since C -!- 
f(P)>0 P 

diverges. 

WC then prove 

LEMMA * 3. c L < 2 log k. 
ui 

P,roof. We evidently have 

We write 

where C, contains the Z’s having less than B divisors amongst the qji, and 

C, all the other Z’s. 
Then 

& < 2B 
I=1 

d,(Z) = PE i 
>r ~ 

CN2B log k 
G eB 

N2B n 1+; =fM2B 
Ti ( 1 1 

for sufficient,ly large B = B(e) say. 

* This Lemma is proved in II. 



We now estimate 3;,. 

Let. I be an int’eger of 2, ; tken, if/3==q,q,...q,. T=r1r2...Yy, 

2 .zz pyt, 

v-here IL’ 3 B and t is con~posec~ of primes greater than k and .ihe factors of 

BY- 
We estimate d,(l) as follows. 
Any a 11 is of the form n = &yi, where ,B;j ,9, >‘j j y. 

The ,Bi’s belonging t,o t’he same yr cannot~ divide one ;Lnothei*! for if we 

had a, = B,y, a;, = j&1’, and PI I&, t,hen 

an evident contradict’ion. From a theorem of Sperne? it, follows 

immediately that a set of divisors of Lhe product qlqs . . . q,, of which no 

one is divisible by a,ny other has at most c 2 ) elements. 
‘, [gl!] J 

Further, from St.irling’s formuIa 

we easily deduce t’hat 

so that 

Hence 

for sufficiently large B. 
Finally, from (l), 

r’ 
ai 

< 42logk+l< Glogl;; 

and so Lemma 3 is proved. 
We now prove Lemma 2, as follows. 

* Sperner9 (A Ein Sntz iiber ITntmneugen einer unendlichen Xenge “, Xath. Zeitschrift, 
27 (192S), 54~a3. 
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We divide the integers m <n for which c-26 <fk(m) <c+2S into two 

classes. In the first class are the integers for which m is divisible by a 

square greater than l/G, and in the second class the other int’egers. The 

number of int’egers of the first class is evidently less than or equal to 

The number of integers of the second class we estimate as follows. We 
write K(m) = II p. Since c-26 <fk(m) =f[K(m)] <c+28, K(m) is 

P<k 
P/m 

evidently an a. The integers m of the second class for which K(m) = Qi 

are of the form ai@: where p is composed of t(he prime factors of ai and t is 
composed of primes greater than k. “wz is divisible by a square greater 

than or equal to p ; for if p = p):“1@ . . , pf@l+l . . .~ m is divisible by 

p:“lppf ,.. pffil+a . . . . Therefore p < l/G. Hence it easily follows from 

t,he sieve of Eratosthenes that the number of integers na of the second 

class for which R(m) = a; is less than or equal to 

Hence the number of the integers of the second class is less than or equal to 

t’his proves Lemma 2. 
We now prove the existence of the distribution function of f(m). 

We divide the integers not exceeding n. satisfying the two condit’ions 

fdm) < c, f(m) 2 c 

into two classes. In the first class we put the integers nl for which 

f(m) > cfs. For these, f(m)-fk(m) > 8, and so, from Lemma 1, their 

number is less e,han 4-c~ In the second class, we put, the integers for which 

f(m) ,< c+6. Their number is less than &en from Lemma 2. Similarly 

for t’he WL for which fk(m) -> c, f(m) < c. Thus t’he existence of the distri- 

bution function is proved. 

It, is evident t’hat the distribut8ion function is a non-increasing function 
of c, and so it,s continuity is an immediate consequence of Lemma 2. This 

completes t,he proof of our resuk 

University of Manchester. 


