ON SOME SEQUENCES OF INTEGERS

Paul Erdös and Paul Turán*.

Consider a sequence of integers $a_{1}<a_{2}<\ldots \leqslant N$ containing no three terms for which $a_{i}-a_{l}=a_{l}-a_{s}$, i.e. a sequence containing no three consecutive members of an arithmetic progression. Such sequences we call A sequences belonging to N, or simply A sequences. We consider those with the maximum number of elements, and denote by $r=r(N)$

* Received 6 June, 1936; read 18 June, 1936.
the number of elements of such maximum sequences. In this paper we estimate $r(N)$.

Theorem I. $\quad r(2 N) \leqslant N$ if $N \geqslant 8$.
Remark. It is interesting to observe that, as we shall see, the theorem is true for $N=4,5,6$, but not for $N=7$.

Proof. First we observe that, if $a_{1}<a_{2}<\ldots<a_{r}$ represents an A sequence belonging to N, then

$$
\begin{equation*}
N+1-a_{r}<N+1-a_{r-1}<\ldots<N+1-a_{1} \tag{1}
\end{equation*}
$$

is also an A sequence.
The same holds for

$$
\begin{equation*}
a_{1}-k<a_{2}-k<\ldots<a_{r}-k \tag{2}
\end{equation*}
$$

for any integer $k<a_{1}$.
Hence, evidently,

$$
\begin{equation*}
r(m+n) \leqslant r(m)+r(n) . \tag{3}
\end{equation*}
$$

We prove Theorem I by induction. Consider first the case $N=4$. If we have $r(8)=5$, then, in consequence of (1) and (2), we may suppose that 1 and two other integers less than or equal to 4 occur in the maximum sequence. Hence the sequence contains either 1, 2, 4 or 1, 3, 4. But it is evident that neither of these sequences leads to $r(8)=5$. Hence $r(8) \leqslant 4$, and, since $1,2,4,5$ is an A sequence, $r(8)=4$.

Consider now $r(10)$. If $r(10)=6$, then, in consequence of $r(8)=4$ and (2), $1,2,9,10$ occurs in the sequence. But then $3,5,6$, and 8 cannot occur. Thus the only possibility is $1,2,4,7,9,10$; this is impossible because it contains $1,4,7$. Hence $r(10) \leqslant 5$, and, since $1,2,4,9,10$ is an A sequence, $r(10)=5^{*}$.

Now we consider r (12). If $r(12)=7$, by the above argument 1, 2, 11, 12 occurs in our sequence. In consequence of $r(8)=4$ and (2), 4 and 9 must occur, too. Hence the sequence contains $1,2,4,9,11,12$; but it cannot contain any other integers. Thus $r(12)=6$. Since $1,2,4,5$, $10,11,13,14$ is an A sequence, $r(14)=8$ and $r(13)=7$. In consequence of (3), we have $r(16) \leqslant 8, r(18) \leqslant 9, r(20) \leqslant 10, r(22) \leqslant 11$.

From these results we now easily deduce the general theorem.

[^0]Suppose that the theorem holds for $2 N-8$. Then, by (3),

$$
r(2 N) \leqslant r(2 N-8)+r(8)<N-3+4=N+1,
$$

i.e. the theorem is proved, for we have established it for the special cases $16,18,20,22$.

For sufficiently large N, we have a better estimate by
Theorem II. For $\epsilon>0$ and $N>N_{0}(\epsilon)$,

$$
r(N)<\left(\frac{4}{9}+\epsilon\right) N
$$

First we prove that $r(17)=8$. Since $r(14)=8$, it is evident that $r(17) \geqslant 8$. In the case $r(17)=9$, the numbers 1 and 17 must occur, since $r(14)=8$. But then 9 cannot occur, and so, by (2), $r(17) \leqslant r(8)+r(8)=8$. Thus $r(34) \leqslant 16$. .Further, $r(35) \leqslant 16$. For, if $r(35) \geqslant 17$, then, by $r(34) \leqslant 16$, the integers 1 and 35 must occur; but then 18 cannot occur, since the sequence would contain $1,18,35$. Hence, as previously, $r(35) \leqslant 16$.

Similarly $r(71) \leqslant 32, \ldots, r\left(2^{k}+2^{k-3}-1\right) \leqslant 2^{k-1}$. Hence the result.
By a similar but very much longer argument we find that

$$
r(18)=r(19)=r(20)=8
$$

On the other hand, $r(21)=9$, since $1,3,4,8,9,16,18,19,21$ is an A sequence; further,

$$
r(22)=r(23)=9
$$

Hence, as previously, we find that, for sufficiently large $N>N(\epsilon)$,

$$
r(N)<\left(\frac{3}{8}+\epsilon\right) N .
$$

At present this is the best result for $r(N)$. It is probable that

$$
r(N)=o(N)
$$

It may be noted that, from $r(20)=8, r(41) \leqslant 16$. On the other hand, $r(41)=16$, since $1,2,4,5,10,11,13,14,28,29,31,32,37,38,40,41$ is an A sequence. G. Szekeres has conjectured that $r\left\{\frac{1}{2}\left(3^{k}+1\right)\right\}=2^{k}$. This is proved* for $k=1,2,3,4$.

More generally, he has conjectured that, if we denote by $r_{l}(N)$ the maximum number of integers less than or equal to N such that no l of

[^1]them form an arithmetic progression, then, for any k, and any prime p,
$$
r_{p}\left(\frac{(p-2) p^{k}+1}{p-1}\right)=(p-1)^{k}
$$

An immediate and very interesting consequence of this conjecture would be that for every k there is an infinity of k combinations of primes forming an arithmetic progression.

Another consequence of it would be a new proof of a theorem of van der Waerden which would give much better limits than any of the previous proofs. Namely, it would follow from the conjecture that, if we denote by $N=f(k, l)$ the least integer such that, if we split the integers up to N into l classes, at least one of them contains an arithmetic progression of k terms, then

$$
f(k, l)<k^{c k \log l} .
$$

The University, Manchester;
Budapest VI, Andrássy út 50 .

[^0]: * $r(9)=5$ and $r(11)=6$, since $1,2,4,8,9$ and $1,2,4,8,9,11$ are A sequences.

[^1]: * It is easily seen that $r\left\{\frac{1}{2}\left(3^{k}+1\right)\right\} \geqslant 2^{k}$; for, if $u \leqslant \frac{1}{2}\left(3^{k}-1\right)$ is any integer not containing the digit 2 in the ternary scale, then the integers $u+1$ form an A sequence.

