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Abstract

A relational database D is given with Ω as the set of attributes. The rows
(tuples, data of one individual) are transmitted through a noisy channel. It
is supposed that at most one data in a row can be changed by the transmis-
sion. We say that A → b (A ⊂ Ω, b ∈ Ω) is an error-correcting functional
dependency if the data in A uniquely determine the data in b in spite of the er-
ror. We investigate the problem how much larger a minimal error-correcting
functional dependency can be than the original one.



1 Introduction

Let us give some examples. Suppose that the pair of attributes (first name,
last name) is a key in the database M . The values in M are the real data.
However, some of the data can be erroneous: the information is misunder-
stood in a phone conversation, the typist makes a mistake or the informant
simply lies. Say, if one of the first names “Mario” is replaced by “Maria” (M
contains “Mario”, M∗ contains “Maria”) then we might have two individual
with names Maria Sklodowska in M∗, hence the individual (row) cannot be
determined from these two attributes. The question raised here is what other
additional attributes we need to make us able to determine the real person
(row).

A database can be considered as an m×n matrix M , where the rows are
the data of one individual, the data of the same sort (attributes) are in the
same column. Denote the set of attributes (equivalently, the set of columns
of the matrix) by Ω, its size is |Ω| = n. It will be supposed that the data
of two distinct individuals are different, that is, the rows of the matrix are
different. Let A,B ⊂ Ω. We say that B funtionally depends on A and write
A→ B if any two rows coinciding in the columns of A are also equal in the
columns of B. Specially, if K → Ω then K is called a key. In other words,
there are no two distinct rows of the matrix which are equal in K. A key
is a minimal key if no proper subset of it is a key. Denote the family of all
minimal keys by K.

Let M denote the matrix of the real data. These data are transmitted
through a noisy channel. M∗ (m× n, again) denotes the matrix of the data
obtained after the transmission. We know that M and M∗ differ in at most
e entries in each row. Although it is also supposed here that the real data
of two distinct individuals are different, that is the rows of M are different,
this cannot be stated about M∗.

We assume that the structure of M is known, on the other hand we only
know the received rows of M∗ and our aim is to make conclusions based on
this information. Suppose for instance that A → a (A ⊂ Ω, a ∈ Ω) holds in
M . Then the data in a row in the columns of A determine the data of the
same row in the column a. We know however only the corresponding rows
in M∗. The data in the columns of A do not necessarily determine the data
in a, since these data are distorted. Can we enlarge A into an A′ whose data
(in M∗) already determine a? If yes, to what extent should it be enlarged?
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For instance, if the number of errors in one row is at most one (e = 1) and
sex is one of the attributes then either the first name or the sex is correct.
Yet, (Maria, Sklodowska, M) can be found in two different rows of M∗ (one
was (Mario, Sklodowska, M) the other one was (Maria, Sklodowska, F )).
Further attributes migh be needed to identify the individual. That is, (first
name, last name, sex) is not a 1-error-correcting key.

Let us emphasize that the problem of data mining in case of errors is
different. Then only M∗ is known, nothing is known about M . In our case
the keys, functional dependencies are known for us in M . We want to modify
them only for the purposes in M∗. In case of data mining we have no prior
information on M , the keys or error-correcting keys should be determined
only on the base of M∗.

Formalize our notions. We write C → {e}B if the values of the matrix
M∗ in the columns of C determine the values in the columns B uniquely,
assuming that at most e errors occur in every row. (Actually, it is determined
in M , the data in M∗ can be erronous.) In other words, for any row r of
M∗ there are no two rows s and t of M both having Hamming distance less
then or equal to e from r in the columns of C but being different in the
columns of B. This is called an e-error-correcting functional dependency.
The aim of the present paper is to find inequalities between the sizes of the
sets occuring in the real functional dependencies and the e-error-correcting
ones. Our previous paper [4] dealt with the case of the keys. The results of
the present paper are analogous.

It is worth mentioning that {a} → {1}a does not hold, since the knowl-
edge of the data in the column a does not give any information, it can be
erronous. It does not determine the value in column a.

The number of different entries in two rows is called the Hamming distance
of these two rows. The m × |C| submatrix of M determined by the set C
of its columns is denoted by M(C). Suppose that the Hamming distance
of any two rows of M(C), which are different in a ∈ Ω, is at least 2e + 1.
Then the Hamming distance of any two rows of M∗(C) is at least 1, that is,
knowing the entries of the unreliable matrix in C determines the value in the
column a, C → {e}a is an e-error-correcting functional dependency. Here
we used the assumption that the functional dependencies of M are known.
The converse is true, too: if the Hamming distance of two rows of M(C),
which are different in a, is at most 2e then it may happen that the rows are
equal in M∗(C), that is, C → {e}a is not true. We obtained the following
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proposition.

Proposition 1.1 C → {e}a (C ⊂ Ω, a ∈ Ω) is an e-error-correcting func-
tional dependency iff the pairwise Hamming distance of the rows of M(C),
which are different in a, is at least 2e + 1. 2

2 Error-correcting functional dependencies

It is easy to see that if the pairwise Hamming distance of the rows of M(C)
being different in a is at least 2e then the knowledge of M∗(C) detects the
error (i.e. the presence of the error in M∗), but does not determine the data in
a uniqely, i.e. there can be more then one rows of M having the same values in
M∗(C). This case is less interesting, but it makes worth introducing the more
general definition: C → (d)a is called a d-distance functional dependency iff
the pairwise Hamming distance of the rows of M(C), which are different in
a, is at least d.

The main aim of the present investigations is to find connections between
the functional dependencies and the d-distance functional dependencies. The
next proposition is the first step along this line. Let Fa be the family of
minimal subsets F of Ω satisfying F → a (in M !).

Proposition 2.1 C → (d)a (C ⊂ Ω, a ∈ Ω) is a d-distance functional de-
pendency iff for any choice a1, . . . , ad−1 ∈ C one can find an F ∈ Fa such
that F ⊆ C − {a1, . . . , ad−1}.

Proof. The necessity will be proved in an indirect way. Suppose that
there exist a1, . . . , ad−1 ∈ C such that C−{a1, . . . , ad−1} contains no member
of Fa, that is, C − {a1, . . . , ad−1} → a does not hold. Therefore there are
two rows of M which are equal in M(C − {a1, . . . , ad−1}) and are different
in a. The Hamming distance of these two rows in M(C) is less than d. The
obvious contradiction completes this part of the proof.

To prove the sufficiency suppose, again in an indirect way, that M(C)
contains two rows with Hamming distance < d and the rows are different
in a. Delete those columns where these rows are different. We found a
set C − {a1, . . . , ad−1} satisfying the condition that M(C − {a1, . . . , ad−1})
contains two rows which are equal everywhere, but the rows are different in
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a. Therefore C − {a1, . . . , ad−1} → a is not true in M , C − {a1, . . . , ad−1}
cannot contain a member of Fa. 2

The systems of functional dependencies were characterized in [1]. We
prefer an equivalent description (see e.g. [3]) by the closure

L(A) = {a : a ∈ Ω, A→ a} (A ⊆ Ω).

It is easy to see that this closure satisfies the following 3 conditions.

A ⊆ L(A), (i)

A ⊆ B implies L(A) ⊆ L(B), (ii)

L(L(A)) = L(A). (iii)

It is well-known ([1], [2]) that there is a database for any closure, in
which the system of functional dependencies is exactly the one defined by this
closure. This is why it is sufficient to give a closure rather than constructing
the complete database or matrix.

It is possible to give a characterization with the families Fa as well. It
is easy to see that Fa consists of {a} and a (possibly empty) inclusion-free
family of subsets of Ω−{a}. (Inclusion-free means that F1, F2 ∈ Fa, F1 6= F2

implies F1 6⊂ F2.) We need one more condition for the interrelation between
these families. Howvere, since we did not find the shortest form and no such
characterization is needed in this paper we prove only the following lemma,
which will be needed later.

Lemma 2.2 Given an inclusion-free family F of subsets of a Ω \ {a}, there
is a system of functional dependencies (and therefore, with the preceeding
remark, a relation M) such that it defines Fa = F ∪ {{a}} for some a ∈ Ω.

Proof. Fix an a ∈ Ω and define Fa as the family consisting of {a} and F
placed in some way in the remaing part of Ω. Let L(A) = A ∪ {a} if F ⊆ A
for some F ∈ Fa and L(A) = A otherwise. It is easy to see that this function
satisfies conditions (i)-(iii), that is, it is a closure. 2

In other words, Lemma 2.2 says that for any inclusion-free family F on
an n− 1-element set there is a database where the family of minimal sets F
satisfying F → a is exactly exactly equal to Fa = F ∪ {{a}}.
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Proposition 2.1 makes us able to give an abstract combinatorial definition,
independent of databases. Let X be an n-element set and F be an inclusion-
free family of its subsets. The d-blownup of F (in notation F(d)) is defined
by

F(d) = {G ⊆ X : for any choice of x1, . . . , xd−1 ∈ G ∃F ∈ F such that

F ⊆ G− {x1, . . . , xd−1} and G is minimal for this property}.

Note that F(1) = F and that, as we will see later, for an inclusion-free
family of sets F forming the left hand sides of the functional dependencies of
a relation F(d) will be the left hand sides of minimal d-distance dependencies.
set

Our first observation is that it may happen that the d-blownup of F is
an empty family while the original F is not. Fix an element a ∈ X and an
integer 2 ≤ k. Define F as the family of all k-element sets (⊂ X) containing
a. Then for any C ⊆ X C − {a} cannot contain any member of F therefore
F(d) is empty for 2 ≤ d.

On the other hand, if F consists of all k-element subsets of X then all
sets G ⊆ X with k + d − 1 elements form F(d). Our last example suggests
that the sizes of the members of F(d) do not exceed the sizes of the members
of F by too much. We will show that this is not really true.

We say that the family F can be pinned by p elements if there are
x1, . . . , xp such that no member of F avoids all of them, that is F∩{x1., . . . , xp} 6=
∅ ∀F ∈ F . We saw that if F can be pinned by d− 1 elements then F(d) is
empty. Otherwise F(d) is never empty since X always satisfies the first part
of the definition of the blownup and if it is not minimal, one can reduce it
until arriving to a minimal set.

Theorem 2.3 Let n0(k, d) ≤ n and let F be an inclusion-free family of
subsets of size at most k of a given set of size n, such that F cannot be
pinned by d−1 elements. Then the sizes of the members of F(d) are at most
c1k

d. On the other hand there is such an F for which all members of F(d)
have size at least c2k

d. Here c1 and c2 depend only on d.

As mentioned earlier, define now Fa(d) as the family of the left hand sides
of the minimal d-distance dependencies described by Proposition 2.1. The
family F(d) will then be defined as the union of the families Fa(d) for all
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a ∈ Ω. If F → a holds for some (a ∈ Ω, F ⊆ Ω) and no proper subset F ′

of F satisfies F ′ → a then F is called a minimal functional dependency set.
The following theorem will be obtained as an immediate consequence of the
previous one.

Theorem 2.4 Let n0(k, e) ≤ n. Suppose that all minimal functional depen-
dency sets have sizes at most k. Then the members of F(2e + 1) cannot be
larger than c1k

2e+1. On the other hand there is a database with minimal func-
tional dependency sets of size at most k in which all members of F(2e + 1)
have sizes at least c2k

2e+1. Here c1 and c2 depend on e, only.

It is worth formulating the special case e = 1 with more specific constants.

Corollary 2.5 Suppose that all minimal functional dependency sets have
sizes at most k. Then the members of F(3) cannot be larger than 3k3. On
the other hand there is a database with minimal functional dependency sets
of size at most k in which all members of F(3) have sizes at least c2k

3 where
c2 is approximately 2

27
.

Our conclusion is that the errors can considerably increase the sizes of
the minimal fuctional dependencies, but the growth is only polynomial.

3 Proofs

Proof of Theorem 2.3 This proof is analogous to the proof of the main
theorem of [4]. Let F be an inclusion-free family of subsets of X. The
definition of F(d) implies that the family {F : F ∈ F , F ⊆ G} cannot be
pinned by d− 1 elements for members G ∈ F(d). On the other hand, by the
minimality of a member G ∈ F(d), this is not true for G− {a} where a ∈ G
is chosen arbitrarily. This gives the following proposition.

Proposition 3.1 G ∈ F(d) iff {F : F ∈ F , F ⊆ G} cannot be pinned by
d− 1 elements, but {F : F ∈ F , F ⊆ G−{a}} can be pinned by some d− 1
elements for every a ∈ G.

2
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Lower estimate. We give an inclusion-free family F consisting of 2 ≤ k-
element sets which generates an F(d) consisting of one member having size
at least c2k

d.
Fix an integer 1 ≤ i < k and take a subset A ⊂ X of size i + d− 1. Let

B1, B2, . . . be all the
(
i+d−1

i

)
i-element subsets of A and

Gi = {B1 ∪ C1, B2 ∪ C2, . . .} ,

where C1, C2, . . . are disjoint subsets of X−A with |C1| = |C2| = · · · = k− i.
This can be carried out if

i + d− 1 +

(
i + d− 1

i

)
(k − i) ≤ n. (3.1)

Using Proposition 3.1 we next show that the only member of Gi(d) is D =
A ∪ ⋃i Ci. It is easy to see that Gi cannot be pinned by d− 1 elements.

On the other hand, if a ∈ Cj for some j then the d-element {a}∪(A−Bj)
pins all members of Gi in D − {a}. If, however, a ∈ A then any d-element
E ⊂ A containing a pins the members of Gi in D−{a}. Therefore D is really
a member of Gi(d). It is easy to see that there is no other member.

Choose i =
⌊
k(1− 1

d
)
⌋
. Then the size of D, given by the left hand side of

(3.1) asymptotically becomes

(d− 1)d−1

dd(d− 1)!
kd.

(3.1) gives a condition how large n has to be. 2

Upper estimate. Let G ∈ F(d) where F ⊂
(
X
≤k

)
(the latter one denotes

the family of all subsets of X of size at most k). We will prove that |G| ≤ dkd.
Since we have to consider only the subsets of G, so it can be supposed that
all members of F are subsets of G.

Proposition 3.1 defines d-element subsets D of G each of them is pinning
F . Moreover, still by Proposition 3.1, their union is G. Denote this family
by D. We know

∪D∈DD = G, (3.2)

D ∩ F 6= ∅ for all D ∈ D, F ∈ F (3.3)

and F cannot be pinned by a set with less than d elements.
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Let I ⊆ G. Define the I-degree of D as the number of members of D
containing I, that is,

degI(D) = |{D ∈ D : I ⊂ D}|.

Lemma 3.2 If |I| < d then

degI(D) ≤ kd−|I|.

Proof. We use induction on j = d − |I|. Suppose that j = d − |I| = 1,
that is, |I| = d−1. If all members of F meet I then F can be pinned by d−1
elements, a contradiction. Therefore there is an F ∈ F which is disjoint to
I. By (3.3) all the sets D satisfying I ⊂ D must intersect this F , therefore
their number is ≤ |F | ≤ k. This case is settled.

Now suppose that the statement is true for j = d−|I| ≥ 1 and prove it for
j + 1 = d− |I|. Let |I∗| = d− j − 1. There must exist an F ∈ F , F ∩ I∗ = ∅
otherwise F is pinned by less than d elements, a contradiction. Let F =
{x1, . . . , xl} where l ≤ k. By (3.3) we have

{D ∈ D : I∗ ⊂ D} = ∪li=1{D ∈ D : (I∗ ∪ {xi}) ⊂ D}. (3.4)

The sizes of the sets on the right hand side are degI∗∪{xi}(D) which are at

most kd−|I∗|−1 = kj by the induction hypothesis. Using (3.4)

degI∗(D) ≤ lkd−|I∗|−1 ≤ kd−|I∗|

is obtained, proving the lemma. 2

Finally, consider any F = {y1, . . . , yr} ∈ F where r ≤ k. By (3.3), the
families {D ∈ D : yi ∈ D} cover D. Apply the lemma for I = {yi}:

|{D ∈ D : yi ∈ D}| ≤ kd−1.

This implies |D| ≤ kd and

| ∪D∈D D| ≤ |D|d ≤ dkd.

Application of (3.2) completes the proof: |G| ≤ dkd. 2

Proof of Theorem 2.4 Let d = 2e+1. Apply the results of Theorem 2.3
first for a family Fa. Since its members are not larger than k, the theorem
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implies that all members of Fa(2e+ 1) are of size at most c1k
2e+1. Since this

is true for every a, the union of the families has the same property.
On the other hand, take the inclusion-free family F giving the optimum

in the lower estimation in Theorem 2.3. Lemma 2.2 defines a system of
functional dependencies (database) in which Fa = F ∪ {a} holds for some
a ∈ Ω. Therefore F(2e + 1) contains sets of size at least c2k

2e+1. 2

4 Further problems

1. Although Theorem 2.3 determines the order of magnitude of the smallest
size in the “worst” family, it does give the exact value. We believe that the
lower estimate is sharp, our construction is the best possible.

Conjecture 4.1 If F ⊆
(
X
≤k

)
then F(d) has a member with size at most

max
i
{i + d− 1 +

(
i + d− 1

i

)
(k − i)}.

for n0(k, d) ≤ n.

2. Can the systems of e-error-correcting dependencies be characterized?
3. The following problem sounds similar to the problem treated here,

but it is actually very different. Suppose that the data go through a noisy
channel, where each data can be distorted with a small probability. So, in
this case only M∗ is known, no information is available on the structure of
M . What is the relationship between the “functional dependencies” found
in M∗ and the real functional dependencies in M? This is the real problem
arising in data mining in a distorted database.
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