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Introduction 2

www.renyi.hu/̃ p erdos = Erdős papers up to 1989 See also [0]
www.renyi.hu/̃ p miki (several related surveys)

Today: Ordinary graphs, no loops, no multiple edges

Turán type extremal graph problems

Given a family L of excluded graphs,

ex(n,L) := max{e(Gn) : L 6⊆ Gn if L ∈ L}.

Notation: Gn, Kp, . . .Tn,p

Tn,p: Turán graph of n vertices and p classes.
In case of graphs the subscript: mostly the number of vertices
ex(n,L),

The family of extremal graphs: EX(n,L).
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How had extremal graph theory started? 3

1. Mantel, (1907) ex(n,K3) =
[

n2

4

]

2. Erdős (1938), Multiplicative Sidon problem, [0]
Eszter Klein construction
= first finite geometry construction in Extremal Graph Theory

3. Turán theorem, Turán problems (1941): when we exclude
a not necessarily complete L. Breakthrough

4. Turán’s questions: What if we exclude a path Pk?
Answer: Erdős-Gallai theorem. What if we exclude a graph of
a Platonic body?

5. Erdős-Stone (1946)

6.
Kővári-Sós-Turán / Erdős (1954)

ex(n,Ka,b) ≤ 1

2
a
√
b − 1 · n2−(1/a) + O(n).
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Other directions in extremal graph theory: 4

1. Hypergraph versions: Mostly very difficult,

2. Hamiltonicity, or other spanning subgraphs
(Dirac theorem, Pósa theorem, . . . )

3. Further Universes, e.g. digraphs,. . .
Brown-Erdős-Sim.

4. Ramsey-Turán (survey: Sim.-Sós [0])

5. Anti-Ramsey
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Turán’s problems: Platonic bodies 5

What happens if we exclude the graphs of the Platonic bodies?

1. Tetrahedron, (Turán)

2. Octahedron: Erdős-Simonovits:

2

41

4 3

1

43

2 3 2

1

3. Cube: Erdős-Simonovits, this is perhaps the most difficult
Turán problem, because of the missing lower bound.

4. Dodecahedron: Simonovits

5. Icosahedron: This lead to the results primarily discussed in
this lecture.

+ Paths,. . . : Erdős-Gallai [0]
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More explicitly 6

Cube theorem, Erdős-Sim.:

ex(n,Q8) = O(n8/5).

Erdős-Sim.: Is this sharp? For some cQ > 0, is

ex(n,Q8) ≥ cQ(n8/5).

We do not even know e.g. that ex(n,Q8)

n3/2
→ ∞.

Dodecahedron theorem, Sim.:

For n > n0
EX(n,D20) = {H(n, 2, 6)}

where H(n, p, s) = Ks−1 ⊗ Tn−s+1,p.

Large part of the theory asserts that
the general case is very similar to the case of Turán’s theorem.
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The Multiplicative Sidon problem 7

Erdős, 1938:

Problem: Multiplicative Sidon [0]

Assume that a1, . . . , am ∈ [1, n] are integers satisfying the Multi-

plicative Sidon condition: all the pairwise products are different,
in the sense that

if aiaj = akaℓ then {i , j} = {k , ℓ}. (1)

How large can m be?

Connected to
Lemma:

If Gn ⊆ K (n, n) and C4 6⊆ Gn then e(Gn) ≤ 3n
√
n.

Generalizations, Erdős, A. Sárközy, Sós / Győri:

They connect certain number theory questions to ex(n,C6) . . .
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Stability results 8

Given a class of excluded graphs, L, with

p := min
L∈L

χ(L) − 1.

Erdős-Sim. Theorem [0]

ex(n,L) = e(Tn,p) + o(n2).

ρ(G ,H)= Hamming distance of G and H:

then minimum number of edges one has to add to or delete from G

to get a G ∗
n isomorphic to H.

Erdős-Sim. Theorem [0],[0],[0]

For every ε > 0 there exists a δ > 0 such that if Gn is L-free and

e(Gn) > ex(n,L) − δn2

then ρ(Gn,Tn,p) < εn2.

This applies to the extremal and almost extremal graphs.
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Extremal graphs 9

If Sn ∈ EX(n,L) then

dmin(Sn) ≥
(

1 − 1

p

)

n − o(n).

This does not apply to the almost extremal graphs, (since deleting
edges the min degree can be pushed down).
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Decomposition classes 10

Definition: Decomposition

Given L, p = p(L), we define the decomposition class M of L as
the family of graphs M for which M⊗Kp−1(t, . . . , t) contains some
forbidden graph.

Examples:

The octahedron graph K (2, 2, 2) has C4 in its decomposition class.
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Octahedron Theorem 11

We start with an illustration. Let O6 = K (2, 2, 2) be the
octahedron graph.

Octahedron Theorem, Erdős and Sim. [0]

If Sn is an extremal graph for the octahedron O6 for n sufficiently
large, then there exist extremal graphs G1 and G2 for the circuit C4

and the path P3 such that Sn = G1 ⊗G2 and |V (Gi )| = 1
2n + o(n),

i = 1, 2.
If G1 does not contain C4 and G2 does not contain P3, then G1⊗G2

does not contain O6.
Thus, if we replace G1 by any H1 ∈ EX(v(G1),C4) and G2 by any
H2 ∈ EX(v(G2),P3), then H1 ⊗ H2 is also extremal for O6.
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Path-Path excluded: 12

In proving the Octaherdon theorem, it is important, that putting a
P3 into both classes of a complete bipartite graph we get an
Octahedron, though P3 is not in the Decomposition class.
So the Decomposition class does not determine the extremal
structure completely.
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Generalized Octahedron theorem [0]

If Sn ix extremal for K (a, b, c , . . . , rp) then the vertices of Sn can be
partitioned into p classes, C1, . . . , Cp so that C1 contains no K (a, b),
C2, . . . , Cp) contains no K (1, c).

Examples: K3(a, b, c), a ≤ b ≤ c

K (a, b) is the important graph in M.

Erdős-Gallai, Erdős, Moon, Sim.

Examples: Moon theorem, s vertex-disjoint Kp+1

s independent edges form the important graph in M.
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More examples on the decomposition 14

Dodecahedron Theorem: L = {D20}
For n > n0 H(n, 2, 6) is the (only) extremal graph for D20

Lemma: Deleting 6 independent edges we can obtain a bipartite
graph.

So the Decomposition class M = 6K2 =6 independent edges

o
o

x

o

o

x
x

x
x

o

o

xo

o
o

x

o

x

o

o

o

Dodecahedron graph The extremal structure
We need
Lemma:

Deleting 5 vertices of D20 we cannot obtain a bipartite graph.
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Error terms in Erdős-Sim. Stability theorem 15

The error terms primarily depend on the decomposition class, i.e.
on ex(n/p,M):

(a) Since we can put an M-extremal graph into the first class
of a Tn,p, and the resulting graph contains no L ∈ L, therefore

ex(n,L) ≥ e(Tn,p) + ex(n/p,M).

(b) The upper bound is

ex(n,L) ≤ e(Tn,p) + p · ex(n/p,M) + O(n).
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Octahedron graph theorem 16

Octahedron Theorem: [0]

If Sn is an extremal graph for the octahedron O6, for n sufficiently
large, then there exist extremal graphs G1 and G2 for the circuit C4

and the path P3 such that Sn = G1×G2 and |V (Gi )| = 1
2n+O(n),

i = 1, 2.

The (k , ℓ)-problem: Gn has fewer than ℓ edges on any k-vertex
subgraph.

The (6,12)-theorem: Griggs, Sim. Thomas

If Sn is an extremal graph for the (6,12)-problem, for n sufficiently
large, then there exist extremal graphs G1 and G2 for the circuits
C3,C4 and the path P2 (!) such that Sn = G1 × G2 and |V (Gi )| =
1
2n + O(n), i = 1, 2.

Füredi-Sim.. . .
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Griggs-Sim.-Thomas thm 17

There are many similar results where the family Lk,ℓ of excluded
graphs are the graphs of k vertices and ℓ edges, (earlier e.g.
Griggs-Sim.-Thomas thm, see [0] and recenty e.g. Füredi and
Simonovits (manuscript))

Griggs-Sim.-Thomas

If Sn is an extremal graph for L6,12 for n sufficiently large, then there
exist extremal graphs G1 and G2 for the circuits {K3,C4} and the
path P2 such that Sn = G1⊗G2 and |V (Gi )| = 1

2n+ o(n), i = 1, 2.
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The product conjecture 18

Let L be finite. If

ex(n,L) > e(Tn,p) + cn1+γ

for some c > 0 and γ > 0 then for each n > n0 the extremal
graphs are of product forms: the vertices of Sn ∈ EX(n,L) can be
partitioned into p classes C i of roughly the same size, so that any
two vertices x , y from distinct classes are connected to each other.

Corollary, Reduction

The general extremal graph problems can be reduced to degenerate
extremal problems.
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Critical edge theorem 19

Odd cycles,

Critical edge theorem

The following assertions are equivalent:
(a) For n > n0 Tn,p is extremal graph for L.
(b) For n > n1 Tn,p is the only extremal graph for L.
(c) There exist an L ∈ L with χ(L) = p + 1, and an edge e in it,

such that χ(L− e) = p − 1.
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The critical edge principle 20

If in ordinary extremal graph problems we can prove a theorem for
L = {Kp} then probably we can prove it for any case where in a
finite family L of excluded graphs there is a
p + 1-edge-colour-critical L.

Examples

1. Andrásfai-Erdős-Sós [1]
→ Erdős–Simonovits [0]

2. Erdős-Kleitman-Rothschild thm [0]
→ Ph. G. Kolaitis, H. J. Prömel, and B. L. Rothschild [0]

3. Babai-Simonovits-Spencer [0]



First results Stability Octahedron / Icosahedron Symmetric sequences References

The Smolenice paper 21

. . . It discusses among others extremal graph problems where the
class Lk,ℓ of excluded graphs consists of the k-vertex graphs L of
at least ℓ edges.
. . .
In some sense this lead to the two important hypergraph papers of
Brown, Erdős, and Sós [0] and [0].

The Ruzsa-Szemerédi theorem [0] answering a question of [0] led to
the Removal Lemma.
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Chromatic conditions 22

Erdős, Andrásfai, Gallai [0].

If Gn is K3-free and is not bipartite, then

e(Gn) <

[

n2

4

]

− n

2
+ O(1).

Andrásfai-Erdős-Sós generalizations [1]. Erdős-Sim. generalization.
The simple chromatic conditions are like

For given p, q the chromatic condition Chromp,q is that one cannot
delete ≤ q vertices from G to obtain a ≤ p-chromatic graph.

Extremal problems with chromatic conditions

We have a family L of forbidden graphs, and q, then we can optimize
over the L-free graphs Gn ∈ Chromp,q.

Our results hold for these extremal problems, too.
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Symmetric graph sequences 23

We have a class L of excluded graphs, the corresponding minimum
chromatic number p and a parameter r .
We have p classes of vertices, C i of roughly the same sizes, and a
class R∗ of exceptional vertices, where |R∗| ≤ r .
Into each class C i of a Tn,p we put some connected isomorphic
graphs Bi of ≤ r vertices, completely covering C i , and join each
vertex of an “Exceptional class” R∗

to each block Bj in the same way .
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The meaning of “in the same way” 24

More precisely:

(a) The blocks for different classes mostly are different, however,
for the same class they are the same.

(b) in each class C i the vertices of the blocks are labeled in
the same way, by 1, . . . , |Bi |

(c) If a v ∈ R∗ is joined to the j th vertex of a block in Bi

then it is joined the j th vertex of each block Bj ′ ⊂ C i .
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The simplest case 25

If all the blocks are K1 (=one vertex graph), consider
H(n, p, s) := Ks−1 ⊗ Tn−s+1,p

The Turán graph Tn,p can be characterized as

an n-vertex ≤ p-chromatic graph with maximum number of edges.

Characterization: H(n, p, s) is the n-vertex graph with the
“chromatic property” that one can delete < s vertices to get a
≤ p-chromatic graph and maximum number of edges

Dodecahedron theorem

For n > n0 H(n, 2, 6) is the only extremal graph for D12.
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Ambiguity? 26

There is no problem with speaking of “corresponding vertices” if
the blocks have no automorphisms, however, we have to be slightly
more careful when some blocks have symmetries.
Therefore we mostly fix some automorphisms

ψi ,j : Bi ,1 → Bi ,j ,

or the fixed “labeling”.
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Path decomposition theorem 27

The icosahedron graph =

1

22

3 4

1

34

1 4

2

3

Main theorem (when a path is in the decomposition class)

If L contains an L which can be p + 1-coloured so that the first two
classes form a graph contained by a path Pτ , then for n > n0(L)
there exist extremal graphs Sn ∈ G(n, p, r).

Is it true that all for some r all the extremal graphs belong to
G(n, p, r)?
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Characterization of all the extremal graphs 28

There is a theorem on this but here we skip it.
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The tree decomposition conjecture 29

Can one extend the the path decomposition theorem to all the
cases when the decomposition class M(L) contains some tree?
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How to solve an extremal graph theorem with

linear remainder term? 30

We consider here only finite L.
The remainder term ex(n,L) − ex(n,Kp+1) is O(n) iff M(L)
contains a tree.

1. Check if s independent edges belong to M?

2. Next check if Pτ ∈ M(L) or not?

3. If YES, then check if apply the general theorem.
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The excluded Petersen graph 31

31

1
3

3

22

1

2
2

J

A

B

C D

E
F

G

HI

Figure 3:

Petersen graph
Figure 4:

Petersen Truncated
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χ(IP10) = 3, the first and last colours span 3 independent edges
(see Fig 3) so the decomposition class contains P6.

Theorem: Petersen-Extremal graphs

For n > n0 Hn,2,3 is the (only) extremal graph for the Petersen graph
IP10.
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Follows from Theorem 2.2 of [0]: 33

Theorem: Hn,p,t-theorem

(i) Let L1, . . . , Lλ be given graphs with
minχ(Li ) = p + 1. Assume that omitting any t − 1 vertices
of any Li we obtain a graph of chromatic number ≥ p + 1, but L1
can be colored in p + 1 colors so that the subgraph of L1 spanned
by the first two colors is the union of t independent edges and
(perhaps) of some isolated vertices. Then, for n > n0(L1, . . . , Lλ),
Hn,p,t is the (only) extremal graph.

(ii) Further, there exists a constant C > 0 such that if Gn

contains no Li ∈ L and

e(Gn) > e(Hn,p,t) −
n

p
+ C ,

then one can delete t−1 vertices of Gn so that the remaining Gn−t+1

is p–colorable.
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This theorem is strongly connected with the
Critical Edge Theorem. It is natural to ask if the uniqueness
holds here as well or not:
Open problem

Is there a family L of forbidden graphs for which for n > n0 H(n, p, t)
is extremal but it is not the unique extremal graph?

Remarks

The condition on L1 is equivalent to that L1 ⊆ Tm,p,t for some m.
One could also formulate this by saying that the decomposition class
contains the graph consisting of t independent edges.

The meaning of (ii) is that the extremal structure is stable in some
sense. To understand this stability better, we introduce the notion
of chromatic properties, first only in its simplest form.

Definition, Bp,t–property

We shall say that a graph has property Bp,t if one cannot delete
t − 1 vertices from it to get a p–colorable graph.



First results Stability Octahedron / Icosahedron Symmetric sequences References

We shall not distinguish a property of graphs from the set of
graphs having this property. If a graph G 6∈ Bp,t and H ⊆ G , then
H 6∈ Bp,t either. To have such a property means that the graph is
“big” in some sense, to not have means, that it is “small”.
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The case of the Nesetril graph 36

Theorem, Sim.

There exists an n0(N12) such that for n > n0, Hn,2,2 is the (only)
extremal graph.

Remark

Theorem 37 does not follow from Path Decomposition Theorem.
Below we shall use the labeling of Figures 3-4.

(a) One can delete 3 independent edges, e.g. BC , EF , and
IH to get a bipartite graph from N12 and the omission of 2 edges is
obviously not enough.

(b) We could apply Path Decomposition Theorem if we
could show that the omission of any 2 vertices leaves us with a 3-
chromatic graph. The extremal graph would be Hn,3,2. However,
this is not the case: the omission of A and L results a tree.
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Figure 13:

The  Luczak graph
Figure 14:

Nešeťril Graph
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Luczak graph excluded 38

Problem: the Luczak graph is excluded

Determine ex(n, L10). What are the extremal graphs?

Theorem on Luczak graph

For L10, Hn,4,2 is the (only) extremal graph, for n > n0(L10).

1

2

43
5

4
1

5

3

2

This is really easy: One can see that L10 is
5-chromatic and that removing any vertex of
L10 it remains 5-chromatic, but one can color
it in 5 colors so that the first two colors span
2 independent edges (see Figure 13). Hence
we can apply our Main Theorem.
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Erdős-Füredi-Gould-Gunderson [0] 39

The excluded graph is the Friendship
graph F k = L2k+1 where k triangles
have one common vertex.

The decomposition contains
kK2 = k independent edges and also
K (1, k).

Earlier the exact value of ex(n, L) was known only for a few graphs
L. In [0] the exact value of ex(n,F k) is determined for any
n ≥ 50k2.

The extremal graph is for n even obtained from a Tn,2 by putting
two vertex-disjoint copies of Kk , for n=odd it is slightly more com-
plicated and the result holds for any n > 50k2.

MathSciNet: “The proof is quite technical and complicated, and
essentially gives the uniqueness of the maximum F k -free graph.”
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[6] P. Erdős: On a theorem or Rademacher-Turán, Illinois J. Math. 6
(1962), 122–127.



First results Stability Octahedron / Icosahedron Symmetric sequences References
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