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Why are extremal problems interesting? 4

Interesting on its own

Strong connection to Ramsey Theory
A deep and wide theory, with may new phenomena
Applicable: Pigeon hole principle
Lead to important new tools
— Using finite geometries
— Using random graphs
— Szemerédi Regularity Lemma
— Property testing
— Graph limits
— ...
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Turán type graph problems 5

Mantel 1903 (?) K3

Erdős: C4: Application in combinatorial number theory.
The first finite geometrical construction (Eszter Klein)

Turán theorem. (1940)

e(Gn) > e(Tn,p) =⇒ Kp+1 ⊆ Gn.

Unique extremal graph Tn,p.

General question:

Given a family L of forbidden graphs, what is the maximum of e(Gn)
if Gn does not contain subgraphs L ∈ L?
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Main Line: 6

Some central theorems

assert that for ordinary graphs the general situation is almost the
same as for Kp+1.

Put
p := min

L∈L
χ(L)− 1.

The extremal graphs Sn are very similar to Tn,p.

the almost extremal graphs are also very similar to Tn,p.
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The meaning of “Very Similar”: 7

One can delete and add o(n2) edges of an extremal
graph Sn to get a Tn,p.

One can delete o(n2) edges of an extremal graph to get
a p-chromatic graph.
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Extremal graphs 8

The “metric” ρ(Gn,Hn) is the minimum number of edges to change
to get from Gn a graph isomorphic to Hn.

Notation.

EX(n,L): set of extremal graphs for L.

Theorem (Erdős-Sim., 1966)

Put
p := min

L∈L
χ(L)− 1.

If Sn ∈ EX(n,L), then

ρ(Tn,p, Sn) = o(n2).
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Erdős-Stone-Sim.. 9

The answer depends on the minimum chromatic number:

Let
p := min

L∈L
χ(L)− 1.

ex(n,L) =
(

1− 1

p

)(

n

2

)

+ o(n2),

Meaning?
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Classification of extremal problems 10

nondegenerate: p > 1

degenerate: L contains a bipartite L

strongly degenerate: Tν ∈M(L)

whereM is the decomposition family.
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Product conjecture 11

Theorem 1 separates the cases p = 1 and p > 1:

ex(n,L) = o(n2) ⇐⇒ p = p(L) = 1

p = 1: degenerate extremal graph problems

Conjecture (Sim.)

If
ex(n,L) > e(Tn,p) + n log n

and Sn ∈ EX(n,L), then Sn can be obtained from a
Kp(n1, . . . , np) only by adding o(n2) edges.

This would reduce the general case to degenerate extremal graph
problems.
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Example: Octahedron Theorem 12

Theorem (Erdős-Sim.)

For O6, the extremal graphs Sn are “products”: Um ⊗Wn−m where Um is
extremal for C4 and Wn−m is extremal for P3. for n > n0. → ErdSimOcta

=
Excluded: octahedron extremal = product
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Structural stability of the extremal graphs 13

Erdős-Sim. Theorem.

Put
p := min

L∈L
χ(L)− 1.

For every ε > 0 there is a δ > 0 such that if L 6⊆ Gn for any L ∈ L
and

e(Gn) ≥
(

1− 1

p

)(

n

2

)

− δn2,

then
ρ(Gn,Tn,p) ≤ εn2
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Applicable and gives also exact results 14

Further examples of Turán:
Octahedron, Icosahedron, Dodecahedron, Path Pk

Later: Petersen graph, Grötzsch
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M. Simonovits:

How to solve a Turán type extremal graph problem? (linear decomposi-

tion), Contemporary trends in discrete mathematics (Stirin Castle, 1997),

pp. 283–305, Amer. Math. Soc., Providence, RI, 1999.
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Decomposition family of L 15

M: Those (minimal) graphs M that cannot be put into the first
graph of Tn,p without getting an L ∈ L.
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Methods: How to prove a complicated but

sharp result? 16

Progressive induction
Using a general method on some particular classes
of excluded graphs → SimDM

Using Stability of the extremal graphs

M. Simonovits:

A method for solving extremal problems in graph theory, Theory of Graphs,

Proc. Colloq. Tihany, (1966), (Ed. P. Erdős and G. Katona) Acad.

Press, N.Y., 1968, pp. 279–319.

Several surveys

M. Simonovits:

Extremal graph theory, in: L.W. Beineke, R.J. Wilson (Eds.), Selected

Topics in Graph Theory II., Academic Press, London, 1983, pp. 161–200.
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Here: 3 types of stability arguments 17

The essence:

The almost extremal items are very similar to the extremal ones.

1. Progressive induction

2. P −Q-stability
3. Using “Ready-made stability theorems”, like Erdős-Sim. or

Lovász-Sim..

L. Lovász and M. Simonovits:

On the number of complete subgraphs of a graph II, Studies in Pure Math.

(dedicated to P. Turán) (1983) 458–495 Akadémiai Kiadó+Birkhäuser

Verlag.



Classical Extremal Graph Theory Methods Hypergraphs Anti-Ramsey Dual Anti-Ramsey

Progressive Induction 18

Induction would be easy but the initial step is difficult

Extremal sequence (Sn).
Distance function ∆(Sn,P), integer.

Either Sn ∈ P or there is an m < n for which

∆(Sn,P) < ∆(Gm)

and m > log n, say.

Conclusion

Then there is an n0 such that Sn ∈ P for n > n0.

Success for the Platonic cases

Dodecahedron, Icosahedron
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What is the method of P −Q-stability? 19

Useful for many graphs and
several hard hypergaph problems.

We wish to optimize f (n,P).

Conjectured maximum

P
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Useful for many graphs and
several hard hypergaph problems.

We wish to optimize f (n,P).

Conjectured maximum

P

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Q

P

We find a related property Q.

Q

P

P−Q



Classical Extremal Graph Theory Methods Hypergraphs Anti-Ramsey Dual Anti-Ramsey

What is the method of P −Q-stability? 19
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Why does Stability help? 20

In all these examples it is much easier to optimize the number of
edges for Q.
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Examples: Critical edge 21

Theorem (Critical edge)

If χ(L) = p + 1 and L contains a color-critical edge, then Tn,p is
the (only) extremal for L, for n > n1. [If and only if]

Sim., (Erdős)

Grötzsch graphComplete graphs
Odd cycles
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The Universe 22

Extremal problems can be asked (and are asked) for many other
object types.

Mostly simple graphs
Digraphs → Brown-Harary, Brown, Erdős, Simonovits

Multigraphs → Brown-Harary, Brown, Erdős, Simonovits

Hypergraphs → Turán, . . .

Geometric graph → Pach, Tóth, Tardos

Integers → Erdős, Sidon,Szemerédi,. . .

groups → BabaiSos → Gowers

other structures
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Main setting: Universe 23

Integers
Groups

Graphs
Digraphs
Hypergraphs
Directed Multihypergraphs

Universe:

We fix some type of structures, like graphs, digraphs, or r -uniform
hypergraphs, integers, and a family L of forbidden substructures,
e.g. cycles C2k of 2k vertices.

A Turán-type extremal (hyper)graph problem

asks for the maximum number ex(n,L) of (hyper)edges a (hy-
per)graph can have under the conditions that it does not contain
any forbidden substructures.
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The general problem 24

Given a universe, and a structure A with two (natural parameters)
n and e on its objects G .
Given a property P.

ex(n,P) = max
n(G)=n

e(G ).

Determine ex(n,P) and
describe the EXTREMAL STRUCTURES
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Examples: A digraph theorem 25

We have to assume an upper bound s on the multiplicity. (Otherwise we

may have arbitrary many edges without having a K3.) Let s = 1.

L:

ex(n, L) = 2ex(n,K3) (n > n0?)

Many extremal graphs: We can combine arbitrary many

oriented double Turán graph by joining them by single arcs.
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W. G. Brown, and M. Simonovits:

Extremal multigraph and digraph problems, Paul Erdős and his mathemat-

ics, II (Budapest, 1999), pp. 157–203, Bolyai Soc. Math. Stud., 11, János

Bolyai Math. Soc., Budapest, 2002.
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Examples: 27

Erdős

Prove that each triangle-free graph can be turned into a bipartite
one deleting at most n2/25 edges.

The construction shows that this is
sharp if true.
Partial results: Erdős-Faudree-
Pach-Spencer

Erdős-Győri-Sim.

Atypical question?
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Turán’s approach 28

In which other way can we ensure a large Kk ⊆ Gn?

E.g., if e(Gn) is large?

Later Turán used to say: Ramsey and his theorems are
applicable because they are generalizations of the
Pigeon Hole Principle .

Turán asked for several other sample graphs L to determine ex(n, L):
Platonic graphs: Icosahedron, cube, octahedron, dodecahedron.
path Pk
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Dodecahedron Theorem (Sim.) 29

3

s−1K

C

C

C

1

2

Dodecahedron: D20 H(n, d , s)
K5

H(n, 2, 6)

For D20, H(n, 2, 6) is the (only) extremal
graph for n > n0.

(H(n, 2, 6) cannot contain a D20 since one can
delete 5 points of H(n, 2, 6) to get a bipartite
graph but one cannot delete 5 points from D20

to make it bipartite.)
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Example: the Icosahedron 30

2

1

3

1

2

4

3

3

1

4

2

4

A

B

nIf B contains a P , then G   contains6
an icosahedron

The decomposition class is: P6.

In some sense the Icosahedrom problem is different from the others:
the stability is missing?
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Application in combin. number theory 31

Erdős (1938): → ErdTomsk

Maximum how many integers ai ∈ [1, n] can be found under the
condition: aiaj 6= akaℓ, unless {i , j} = {k , ℓ}?

This lead Erdős to prove:

ex(n,C4) ≤ cn
√
n.

The first finite geometric construction to prove the lower bound
(Eszter Klein)

Crooks tube
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First “attack”: 32

The primes between 1 and n satisfy Erdős’ condition.

Can we conjecture g(n) ≈ π(n) ≈ n

log n
?

YES!

Proof idea: If we can produce each non-prime m ∈ [1, n] as a product:

m = xy , where x ∈ X , y ∈ Y ,

then
g(n) ≤ π(n) + exB(X ,Y ;C4).

where exB(U,V ; L) denotes the maximum number of edges in a

subgraph of G (U,V ) without containing an L.
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Degenerate vs Non-degenerate problems 33

Theorem (Erdős)

ex∗(n,C4) ≤ 3n
√
n + O(n).

Theorem (Erdős-Kővári-T. Sós-Turán)

ex(n,K (a, b)) ≈ 1

2
a
√
b − 1 · n2− 1

a + O(n).

1

Z. Füredi and M. Simonovits:

The history of degenerate (bipartite) extremal graph problems, Erdős

Centennial, (2013) pp. 169–264 Springer arXiv
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Kővári-T. Sós-Turán theorem 34

One of the important extremal graph theorems is that of
Kővári, T. Sós and Turán, → KovSosTur

solving the extremal graph problem of K2(p, q).

Theorem (Kővári–T. Sós–Turán)

Let 2 ≤ p ≤ q be fixed integers. Then

ex(n,K (p, q)) ≤ 1

2
p
√

q − 1 n2−1/p +
1

2
pn.
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Is the exponent 2− (1/p) sharp? 35

Conjecture (KST is Sharp)

For every integers p, q,

ex(n,K (p, q)) > cp,q n
2−1/p.

Known for p = 2 and p = 3: Finite geometric constructions
Erdős, Rényi, V. T. Sós, → ErdRenyiSos

W. G. Brown → BrownThom

Random methods: → ErdRenyiEvol

ex(n,K (p, q)) > cpn
2− 1

p
−

1
q .

Füredi on K2(3, 3): The Brown construction is sharp.

Kollár-Rónyai-Szabó: q > p! . Commutative Algebra constr.

Alon-Rónyai-Szabó: q > (p − 1)! .
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Unknown: 36

Missing lower bounds: Constructions needed

“Random constructions” do not seem to give the right
order of magnitude when L is finite

We do not even know if Pr1

ex(n,K (4, 4))

n5/3
→∞.

Partial reason for the bad behaviour:
Lenz Construction
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Degenerate problems 37

Given a family L of forbidden graphs,

ex(n,L) = o(n2).

if and only if there is a bipartite graph in L.
Moreover, if L0 ∈ L is bipartite, then

ex(n,L) = O(n2−2/v(L0)).

Proof. Indeed, if a graph Gn contains no L ∈ L, then it contains
no L0 and therefore it contains no K2(p, v(L0)− p), yielding an
L ⊆ Gn. .
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Supersaturated Graphs: Degenerate 38

Prove that if
E = e(Gn) > c0n

2−(1/p),

then the number of Kp,q’s in Gn

#K (p, q) ≥ cp,q
E

n2

pq

The meaning of this is that an arbitrary Gn having more edges than the
(conjectured) extremal number, must have – up to a multiplicative con-
stant, – at least as many Kp,q as the corresponding random graph,

see conjectures Erdős and Sim. and of Sidorenko
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Supersaturated, Non-Degenerate 39

If
e(Gn) > ex(n, L) + cn2,

then Gn contains ≥ cLn
v(L) copies of L

This extends to multigraphs, hypergraphs, directed multihypergraphs.

Brown-Simonovits → BrownSimDM
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Bondy-Simonovits 40

Theorem (Even Cycle: C2k)

ex(n,C2k) ≤ c1kn
1+(1/k).

Conjecture (Sharpness)

Is this sharp, at least in the exponent? The simplest unknown case
is C8,

It is sharp for C4,C6, C10

Could you reduce k in c1kn
1+(1/k)?

YES: Boris Bukh and Zilin Jiang: basically: k →
√
k log k
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An annoying open problem 41

Conjecture (General, even cycles)

For some ck > 0, ex(n,C2k) > ckn
1+(1/k). Pr2

Weakening:

Conjecture (Just for the octogon)

For some c4 > 0 ex(n,C8) > c4n
5/4. Pr3

Weakening, other direction:

Θ4,5

k path of length t
joining x and y

Conjecture (For Θ-graphs)

Given a k, there exists an t = t(k) For which some ck > 0

ex(n,Θk,t) > ckn
1+ 1

k . Pr4
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Sketch of the proof of Bondy-Simonovits:

(???) 42

Lemma

If D is the average degree in Gn, then Gn contains a subgraph Gm

with

dmin(Gm) ≥
1

2
D and m ≥ 1

2
D.

So we may assume that Gn is bipartite and regular.
Assume also that it does not contain shorter cycles either.
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Cube-reduction 43

Theorem (Cube, Erdős-Sim.)

ex(n,Q3) = O(n8/5).

New Proofs: Pinchasi-Sharir, Füredi, . . .

The cube is obtained from C6 by adding two vertices, and joining
two new vertices to this C6 as above.

We shall use a more general definition: L(t).
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General definition of L(t): 44

Take an arbitrary bipartite graph L and K (t, t). 2-color them!
join each vertex of K (t, t) to each vertex of L of the opposite

color

K(t,t)L

L(t)

Theorem (Reduction, Erdős-Sim.)

Fix a bipartite L and an integer t.
If ex(n, L) = n2−α and L(t) is defined as above then ex(n, L(t)) ≤ n2−β

for
1

β
− 1

α
= t.
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Examples 45

Open Problem: Pr5

Find a lower bound for ex(n,Q8), better than cn3/2.
Conjectured: ex(n,Q8) > cn8/5.
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An Erdős problem: Compactness? 46

We know that if Gn is bipartite, C4-free, then

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2).

We have seen that there are C4-free graphs Gn with

e(Gn) ≈
1

2
n3/2 + o(n3/2).

Conjecture (Erdős)

Is it true that if K3,C4 6⊆ Gn then

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2) ?

This does not hold for hypergraphs (Balogh) or for geometric graphs
(Tardos)
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Erdős-Sim., C5-compactness: 47

If C5,C4 6⊆ Gn then → ErdSimComp

e(Gn) ≤
1

2
√
2
n3/2 + o(n3/2).

Unfortunately, this is much weaker than the conjecture on C3,C4:
excluding a C5 is a much more restrictive condition.
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Degenerate Compactness 48

Is it true that if L is a finite family of bipartite graphs then there
exists an L0 ∈ L such that

ex(n,L)
ex(n, L0)

is bounded?
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Rational exponents? 49

Conjecture (Rational exponents, Erdős-Sim.)

Given a bipartite graph L, is it true that for suitable α ∈ [0, 1)
there is a cL > 0 for which

ex(n, L)

n1+α
→ cL > 0 ?

Or, at least, is it true that for suitable α ∈ [0, 1) there exist a
cL > 0 and a c∗L > 0 for which

c∗1 ≤
ex(n, L)

n1+α
≤ cL ?
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Constructions using finite geometries 50

p ≈ √n = prime (n = p2)
Vertices of the graph Fn are pairs: (a, b) mod p.
Edges: (a, b) is joined to (x , y) if ac + bx = 1 mod p.

Geometry in the constructions: the neighbourhood is a straight line and
two such nighbourhoods intersect in ≤ 1 vertex.

=⇒ No C4 ⊆ Fn
loops to be deleted
most degrees are around

√
n:

e(Fn) ≈ 1
2n
√
n
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Finite geometries: Brown construction 51

Vertices: (x , y , z) mod p

Edges:
(x − x ′)2 + (y − y ′)2 + (z − z ′)2 = α.

ex(n,K (3, 3)) >
1

2
n2−(1/3) + o(...).

→ BrownThom
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The first missing case 52

The above methods do not work for K (4, 4).

We do not even know if Pr6

ex(n,K2(4, 4))

ex(n,K2(3, 3))
→∞.

One reason for the difficulty: Lenz construction:

E
4 contains two circles in two orthogonal planes:

C1 = {x2+y2 =
1

2
, z = 0, w = 0} and C2 = {z2+w2 =

1

2
, x = 0, y = 0}

and each point of C1 has distance 1 from each point of C2: the unit
distance graph contains a K2(∞,∞).
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Examples: Multigraphs, Digraphs, . . . 53

Brown-Harary: bounded multiplicity: r

Brown-Erdős-Sim. → BrownSimDM

r = 2s: digraph problems and multigraph problems seem to be
equivalent:

– each multigraph problem can easily be reduced to digraph
problems

– and we do not know digraph problems that are really more
difficult than some corresponding multigraph problem
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Examples: Numbers, . . . 54

Tomsk
Sidon sequences

Let rk(n) denote the maximum m such that there are m
integers a1, . . . , am ∈ [1, n] without k-term arithmetic
progression.

Theorem ( Szemerédi Theorem)

For any fixed k rk(n) = o(n) as n→∞.

History (simplified):
K. F. Roth: r3(n) = o(n)
Szemerédi
Fürstenberg: Ergodic proof
Fürstenberg-Katznelson: Higher dimension
Polynomial extension, Hales-Jewett extension
Gowers: much more effective
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Erdős on unit distances 55

Many of the problems in the area are connected with the following
beautiful and famous conjecture, motivated by some grid
constructions.

Conjecture (P. Erdős)

For every ε > 0 there exists an n0(ε) such that if n > n0(ε) and Gn

is the Unit Distance Graph of a set of n points in E
2 then

e(Gn) < n1+ε.
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Szemerédi-Ruzsa 56

f (n, 6, 3)
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Removal Lemma 57

Originally for K3, Ruzsa-Szemerédi

Generaly: through a simplified example:

For every ε > 0 there is a δ > 0:
If a Gn does not contain δn10 copies of the Petersen graph, then we
can delete εn2 edges to destroy all the Petersen subgraphs.

1
2
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something similar is applicable in Property testing.
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Hypergraph extremal problems 58

3-uniform hypergraphs: H = (V ,H)
χ(H): the minimum number of colors needed to have in each
triple 2 or 3 colors.

Bipartite 3-uniform hypergraphs:

The edges intersect both classes
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Three important hypergraph cases 59

1

d

a

bc x

xx2 3

Complete 4-graph, || Fano configuration, || octahedron graph
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The famous Turán conjecture 60

Conjecture (Turán)

The following structure is the (? asymptotically) extremal

structure for K
(3)
4 :

For K
(3)
5 one conjectured extremal graph is just the above

“complete bipartite” one!
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Two important theorems 61

Theorem (Kővári-T. Sós-Turán)

Let 2 ≤ a ≤ b be fixed integers. Then

ex(n,K (a, b)) ≤ 1

2
a
√
b − 1 · n2− 1

a +
1

2
an.

a

b

Theorem (Erdős)

ex(n,K
(r)
r (m, . . . ,m)) = O(nr−(1/mr−1)).

Prove that ex(n,L) = o(nk). iff some L ∈ L
can be k-colored so at each edge meats each
of the k colors.
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The T. Sós conjecture 62

Conjecture (V. T. Sós)

Partition n > n0 vertices into two classes A and B with
||A| − |B || ≤ 1 and take all the triples intersecting both A and B.
The obtained 3-uniform hypergraph is extremal for F .

The conjectured extremal graphs: B(X ,X )
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Füredi-Kündgen Theorem 63

If Mn is an arbitrary multigraph (without restriction on the edge
multiplicities, except that they are nonnegative) and all the 4-vertex
subgraphs of Mn have at most 20 edges, then

e(Mm) ≤ 3

(

n

2

)

+ O(n).

→ FureKund

Theorem (de Caen and Füredi)

→ FureCaen

ex(n,F) = 3

4

(

n

3

)

+ O(n2).
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The Fano-extremal graphs 64

Theorem (Main, Füredi-Sim. / Keevash-Sudakov)

If H is a triple system on n > n1 vertices not containing F and of
maximum cardinality, then χ(H) = 2.

=⇒ ex3(n,F) =
(

n

3

)

−
(⌊n/2⌋

3

)

−
(⌈n/2⌉

3

)

.
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Stability 65

Theorem

There exist a γ2 > 0 and an n2 such that:
If F 6⊆ H and

deg(x) >

(

3

4
− γ2

)(

n

2

)

for each x ∈ V (H),

then H is bipartite, H ⊆ H(X ,X ). → FureSimFano
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Anti-Ramsey theorems 66

Definition

Given a colouring of the edges of a graph L, we call L totally
multicoloured (TMC), if all the edges of L have different colours.
For fixed L, an edge-coloured G is TMC if each L ⊆ G is TMC. If
G is not TMC, then we call it Badly coloured. (If G is TMC, we
may call it Well-coloured.)

The original version

Given a sample graph L, and e(Gn) = e, How many colours X of an
edge-colouring of Gn ensure at least one TMC-copy of L?

Notatition: The maximum will be denoted by AR(n,L).
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Reducing Anti-Ramsey to Extremal 67

Consider the case when Gn = Kn. If we take one edge from each
colour, then we get a graph Hn and the condition means that it
cannot contain any L ∈ L. Therefore

AR(n,L) ≤ ex(n,L).

Improvement

For a given L, denote by L∗ the family of the graphs obtained from
the graphs L ∈ L by deleting an edge xy from L in all the ways
and then gluing the pairs of these graphs in all the possible ways by
identifying xy ∈ Li and xy ∈ Lj .
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Balanced versions, Erdős-Tuza 68

Given a sample graph L, and e(Gn) = e, How many colours X of
an edge-colouring of Gn ensure at least one TMC-copy of L, if each
colour is used “in an even way”????

Erdős, Tuza: Rainbow subgraphs in edge-colorings of complete
graphs. Quo vadis, graph theory?, 81–88, Ann. Discrete Math.,
55, North-Holland, Amsterdam, 1993.
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A dual Anti-Ramsey problem 69

Introductory example

Given a graph Gn with

e(Gn) =

[

n2

4

]

+ 1.

How many colours are needed to 5-edge-colour each C5 ⊂ Gn?

The more general version

Given a sample graph L, and graph Gn with

e(Gn) = ex(n, L) + k .

How many colours are needed to e(L)-edge-colour each L ⊂ Gn?
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Motivation 70

[BEGS]: Burr, Erdős, Graham, Sós
[BEFGS]: Burr, Erdős, Frankl, Graham, Sós

The problem seems to be very interesting on its own. It emerged
in “Theoretical Computer Science”. Both [BEGS] and [BEFGS] men-
tion that their motivation actually originated from a question of
S. Berkowitz, concerning time-space trade-offs for Turing Ma-
chines (models of computation), for which the Ruzsa-Szemerédi
theorem [RuzsaSzem], yields some estimate but “which is still unre-
solved.” The details can be found in the Appendix of [BEGS].
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Introduction 71

L ex(n, L) ex(n, L) + 1 ex(n, L) + cn t2(n) + εn2
(

n
2

)

− εn2

Kk tk−1(n)
(

k
2

) (

k
2

) (

k
2

)

misprint?

C5 t2(n) cn ≤ cn
√
n > cn ≤ cn2

log n

Cp t2(n) cn2 cn2 cn2 cn2

p = 7, 9

Table : Values of χS(n, e, L) for various graphs and values of n, e

“If we examine the first three rows of Table ??, we see a
striking trichotomy: C3, C5 and all the other odd cycles
behave very differently. For L = C3, χS(n, e, L) is very small,
and is not hard to determine; for L = C5, χS(n, e, L) seems to
behave in a complicated and poorly-understood way; for the
other odd cycles, χS(n, e,Ck) is very large and good estimates
are known. . . ”
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Dual Anti-Ramsey theorems 72

As we have mentioned, in some sense the problems in [BEGS] are dual
to the “original” Anti-Ramsey problems: instead of determining the
maximum number of colours without having a TMC copy of L, we
are looking for the minimum number of colours making possible
that each copy of L is TM-coloured.a

aMore precisely, we have a “host” graph Un containing L and we try to

determine the maximum number of colours used for Un without getting a TMC

copy of L, where Un can be Kn, or a random graph Rn,p. . .

[BEGS] S. A. Burr, P. Erdős, R. L. Graham, and V. T. Sós,

Maximal antiramsey graphs and the strong chromatic number, J
Graph Theory 13 (1989), 263–282.

S. A. Burr, P. Erdős, P. Frankl, R. L. Graham, and V. T. Sós,

Further results on maximal antiramsey graphs, In Graph Theory, Combi-
natorics and Applications, Vol. I, Y. Alavi, A. Schwenk (Editors), John
Wiley and Sons, New York, 1988, pp. 193–206.
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So L = C5 seems to be one of the most interesting cases.
Chapter 4 of [BEGS] deals with L = C5. It contains four related
theorems. We improve those results, find the corresponding exact
bounds. Actually, the C5-line of Table ?? is

Theorem 4.1 of [BEGS]. There exists an n0 such that if n > n0

and e =
[

n2

4

]

+ 1, then

c1n ≤ χS(n, e,C5) ≤
⌊n

2

⌋

+ 3.
A

B

a1 a2 a3 a4a5

b1 b2 bi bj

Theorem (Erdős-Sim)

There exists a threshold n0 such that if n > n0, and a graph Gn

has
[

n2

4

]

+ 1 edges and we colour its edges so that every C5 is

5–coloured, then we have to use at least
⌊

n
2

⌋

+ 3 colours.
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A

B

a1 a2 a3 a4 a5

b1 b2 bi bj
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Construction (Upper bound in Theorem 4.1 of [BEGS])

Consider Gn ∈ Tn,2,1, with two colour classes
A = {a1, a2, a3, a4, . . . , aα} and B = {b1, . . . , bβ}, where α =

⌈

n
2

⌉

,
β =

⌊

n
2

⌋

. Gn has one special edge a1a2, and we colour the edges of
Gn by

⌊

n
2

⌋

+ 3 colours in the following way:

X(a1a2) = 0;

X(a1u) = a1, if u ∈ B;

X(a2u) = a2 if u ∈ B;

X(zbt) = bt if bt ∈ B and z ∈ A− {a1, a2}.
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A slightly more general Construction 3 76

For each at ∈ A fix a permutation πt : B→ B and

colour atbj by πt(bj)

Good colourings ←→ Truncated Latin Squares.
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Theorem (Uniqueness)

There exists an n0 such that if n > n0 and e(Gn) =
[

n2

4

]

+ 1, then

the minimum number of colours,
⌊

1
2n

⌋

+ 3, to TM-colour all the
C5’s of Gn is attained only if Gn is a Turán graph on two classes.
and the colouring is described in Construction 3.
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General One-sided construction 78

Given p, q, ℓ, h, with p+q = n, p ≥ q, ℓ ≤
(

h
2

)

, consider a complete
bipartite graph G [A,B], where A = {y1, . . . , yp}, B = {u1, . . . , uq}
and A

∗ = {y1, . . . , yh} ⊂ A. Embed ℓ edges e1, . . . , eℓ into G [A,B]
with endvertices in A

∗. Assume that each yt ∈ A
∗ is covered by

some ei . For each yt ∈ A fix a permutation πt : B→ B. Let Gh be
the graph defined by the edges e1, . . . , eℓ.

1. Colour Gh in χSI (Gh) colours so that the edges of the same
colour are pairwise strongly independent.

2. If yt 6∈ V (Gh), i.e. t > h, then X(ytuj) = πt(uj).
3. Finally,

3.1 for h = 2 (ℓ = 1) colour ytuj with y t for t = 1, 2;
3.2 For h = 3, ℓ = 2, let Gh = P3 = y1y2y3. Then, as an

exception, we may connect y2 to B in one colour y2, but then
any edge between y1, y2, y4 and B are distinct: in case of this
exception we use at least 3|B|+ 3 colours.

3.3 for h ≥ 4 colour ytuj with (πt(uj), t) for t = 1, 2, . . . , h.
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Results on slightly larger k 79

Theorem

There exists a function ϑ(n)→∞ such that if
0 < k =

(

h
2

)

< ϑ(n), then the upper bound of Theorem 4.2/

[BEGS] is sharp for e =
[

n2

4

]

+ k:

χS(n, e,C5) = (h + 1)
⌊n

2

⌋

+ k .

Because of the monotonicity, this implies

Theorem

There exists a function ϑ(n)→∞ such that if

0 < k ≤
(

h
2

)

< ϑ(n), then for e =
[

n2

4

]

+ k,

χS(n, e,C5) = (h + 1)
⌊n

2

⌋

+ k + O(
√
k).
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Let
(

h − 1

2

)

< k ≤
(

h

2

)

, i.e. h =

⌈

1 +
√
1 + 8k

2

⌉

Theorem 4.2 of [BEGS]. Let n be large and e =
[

n2

4

]

+ k.

Define h by (above) Then

χS(n, e,C5) ≤ (h + 1)
⌊n

2

⌋

+ k .

To prove this, consider the following construction (see [BEGS])

Construction (Small k)

Let k ≥ 3. Using the above notations, embed Gh = Kh into A of
G [A,B]. Colour each edge of Gh by distinct colours 1, 2, . . . , k.
For each ai ∈ A fix a permutation πi : B→ B and colour aibj by

(πi (j), i), for i = 1, . . . , h. Further, for i > h colour aibj by πi (j).
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Proof, First step: Almost bipartite 81

The first tool will be to count the triangles in Gn.

Theorem

Fix an arbitrary (huge) constant Ω > 0. Let Gn be a graph with
χ(Gn,C5) ≤ Ωn. Then m(C3,Gn) = o(n3). Further, if

e(Gn) >
[

n2

4

]

− o(n2), then ρ(Gn,Tn, 2) = o(n2), i.e. V (Gn) can

be partitioned into two classes A and B of sizes
|A|, |B| = 1

2n + o(n), so that every vertex of A is joined to at most
o(n) other vertices of A, and every vertex of B is joined to at most
o(n) other vertices of B.
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Lovász-Simonovits Stability 82

In the next theorem t and d are defined by

e(Gn) =

(

1− 1

t

)

n2

2
and d = ⌊t⌋.

Theorem (Lovász–Sim. [LovSimBirk])

Let C ≥ 0 be an arbitrary constant. There exist positive constants
δ > 0 and a C ′ > 0 such that if 0 < k < δn2 and Gn is a graph
with

e(Gn) = e(Tn, p) + k ,

and

m(Kp,Gn) <

(

t

p

)(

n

p

)p

+ Cknp−2,

then there exists a Kd(n1, . . . , nd) such that
∑

ni = n,
|ni − n

d
| < C ′

√
k and Gn can be obtained from Kd(n1, . . . , nd) by

changing at most C ′k edges.
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Ruzsa-Szemerédi/Removal Lemma 83

Brown-Erdős-Sós: f (n, k , ℓ)

Theorem (Ruzsa-Szemerédi)

If (Gn) is a graph sequence with o(n3) triangles, then we can
delete o(n2) edges from the graph to get atriangle-free graph.

Theorem (Ruzsa-Szemerédi)

If (Hn) is a sequence of 3-uniform hypergraphs with no 6 vertices
defining 3 triangles, then it has at most o(n2) triangles.
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Connection to Ruzsa-Szemerédi 84

As a tool, we shall need one more result from [BEGS], on the case
L = P4, which – as we shall see – is strongly connected to the
problem of determining χS(n, e,C5).

Theorem 6.3 of [BEGS]. For any c > 0,

1

n
χS(n, cn

2,P4)→∞.

In other words, if e(Gn) is a graph with > cn2 edges and the edges
are coloured so that every P4 is 3–coloured, then we use at least
p(c , n) · n colours for some function p(c , n) tending to ∞ . (This
result is strongly connected to the theorem of
Ruzsa and Szemerédi [RuzsaSzem].)
The function p(c , n) will play an important role in our proofs.
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In fact, the largest value e for which

χS(n, e,P4) ≤ n

satisfies
c1f (n, 6, 3) ≤ e(n) ≤ c2f (n, 6, 3).
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Lemma

If Gn contains a vertex x for which N(x) contains > cn2 edges,
then for some gc(n)→∞ we use at least gc(n) · n colours to
TM–colour all the pentagons of Gn.
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Sketch of the proof 87

1. We show that the neighbourhood of each x ∈ V (Gn) contains
o(n2) edges.

2. Therefore m(Gn,K3) = o(n3).

3. Applying Lovász-Sim we get that Gn is almost Tnn, 2.

4. We recursively delete the low-vertex vertices to get a (large)
subgraph Gm in which the minimum degree is at least, say
n/3.

5. We show (in several steps) that the extremal structure is the
one described by our constructions, otherwise our Gn would
need many colours.
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Thank for your attention
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