Application of the Stability method in Extremal Graph Theory and related areas

Miklós Simonovits
Alfréd Rényi Mathematical Institute, Budapest

University Shandong (Jinan) May 30, 2018
(Jinan18-A)

Extremal graph theory and Ramsey theory were among the early and fast developing branches of 20th century graph theory. We shall survey the early development of Extremal Graph Theory, including some sharp theorems.

```
Strong interactions
between these fields:
Here everything influenced
everything
```

Extremal graph theory and Ramsey theory were among the early and fast developing branches of 20th century graph theory. We shall survey the early development of Extremal Graph Theory, including some sharp theorems.

Strong interactions between these fields: Here everything influenced everything

Extremal graph theory and Ramsey theory were among the early and fast developing branches of 20th century graph theory. We shall survey the early development of Extremal Graph Theory, including some sharp theorems.

Why are extremal problems interesting?

- Interesting on its own
- Strong connection to Ramsey Theory
- A deep and wide theory, with may new phenomena
- Applicable: Pigeon hole principle
- Lead to important new tools
- Using finite geometries
- Using random graphs
- Szemerédi Regularity Lemma
- Property testing
- Graph limits

Turán type graph problems

Mantel 1903 (?) K_{3}
Erdős: C_{4} : Application in combinatorial number theory. The first finite geometrical construction (Eszter Klein)

Turán theorem. (1940)

$$
e\left(G_{n}\right)>e\left(T_{n, p}\right) \quad \Longrightarrow \quad K_{p+1} \subseteq G_{n} .
$$

Unique extremal graph $T_{n, p}$.

General question:

Given a family \mathcal{L} of forbidden graphs, what is the maximum of $e\left(G_{n}\right)$ if G_{n} does not contain subgraphs $L \in \mathcal{L}$?

Main Line:

Some central theorems
assert that for ordinary graphs the general situation is almost the same as for K_{p+1}.

Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

- The extremal graphs S_{n} are very similar to $T_{n, p}$.
- the almost extremal graphs are also very similar to $T_{n, p}$.

The meaning of "VERY Similar":

- One can delete and add $o\left(n^{2}\right)$ edges of an extremal graph S_{n} to get a $T_{n, p}$.
- One can delete $o\left(n^{2}\right)$ edges of an extremal graph to get a p-chromatic graph.

Extremal graphs

The "metric" $\rho\left(G_{n}, H_{n}\right)$ is the minimum number of edges to change to get from G_{n} a graph isomorphic to H_{n}.

Notation.
$\operatorname{EX}(\mathbf{n}, \mathcal{L})$: set of extremal graphs for \mathcal{L}.

Theorem (Erdős-Sim., 1966)
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

If $S_{n} \in \operatorname{EX}(\mathbf{n}, \mathcal{L})$, then

$$
\rho\left(T_{n, p}, S_{n}\right)=o\left(n^{2}\right) .
$$

Erdős-Stone-Sim..

The answer depends on the minimum chromatic number:
Let

$$
\begin{gathered}
p:=\min _{L \in \mathcal{L}} \chi(L)-1 \\
\operatorname{ex}(n, \mathcal{L})=\left(1-\frac{1}{p}\right)\binom{n}{2}+o\left(n^{2}\right)
\end{gathered}
$$

Meaning?

Classification of extremal problems

- nondegenerate: $p>1$
- degenerate:
\mathcal{L} contains a bipartite L
- strongly degenerate:
$T_{\nu} \in \mathcal{M}(\mathcal{L})$
where \mathcal{M} is the decomposition family.

Product conjecture

Theorem 1 separates the cases $p=1$ and $p>1$:

$$
\operatorname{ex}(n, \mathcal{L})=o\left(n^{2}\right) \Longleftrightarrow p=p(\mathcal{L})=1
$$

$$
p=1: \text { degenerate extremal graph problems }
$$

Conjecture (Sim.)

If

$$
\operatorname{ex}(n, \mathcal{L})>e\left(T_{n, p}\right)+n \log n
$$

and $S_{n} \in \operatorname{EX}(\mathbf{n}, \mathcal{L})$, then S_{n} can be obtained from a $K_{p}\left(n_{1}, \ldots, n_{p}\right)$ only by adding o($\left.n^{2}\right)$ edges.

This would reduce the general case to degenerate extremal graph problems.

Example: Octahedron Theorem

Theorem (Erdős-Sim.)

For O_{6}, the extremal graphs S_{n} are "products": $U_{m} \otimes W_{n-m}$ where U_{m} is extremal for C_{4} and W_{n-m} is extremal for P_{3}. for $n>n_{0} . \quad \rightarrow$ ErdSimOcta

ExCLUDED: OCTAHEDRON

EXTREMAL $=$ PRODUCT

Structural stability of the extremal graphs

Erdős-Sim. Theorem.
Put

$$
p:=\min _{L \in \mathcal{L}} \chi(L)-1 .
$$

For every $\varepsilon>0$ there is a $\delta>0$ such that if $L \nsubseteq G_{n}$ for any $L \in \mathcal{L}$ and

$$
e\left(G_{n}\right) \geq\left(1-\frac{1}{p}\right)\binom{n}{2}-\delta n^{2},
$$

then

$$
\rho\left(G_{n}, T_{n, p}\right) \leq \varepsilon n^{2}
$$

Applicable and gives also exact results

Further examples of Turán:
Octahedron, Icosahedron, Dodecahedron,
Path P_{k}

Later:

Grötzsch

M. Simonovits:

How to solve a Turán type extremal graph problem? (linear decomposition), Contemporary trends in discrete mathematics (Stirin Castle, 1997), pp. 283-305, Amer. Math. Soc., Providence, RI, 1999.

Decomposition family of \mathcal{L}

\mathcal{M} : Those (minimal) graphs M that cannot be put into the first graph of $T_{n, p}$ without getting an $L \in \mathcal{L}$.

Methods: How to prove a complicated but sharp result?

- Progressive induction
- Using a general method on some particular classes of excluded graphs \rightarrow SimDM
- Using Stability of the extremal graphs

M. Simonovits:

A method for solving extremal problems in graph theory, Theory of Graphs, Proc. Colloq. Tihany, (1966), (Ed. P. Erdős and G. Katona) Acad. Press, N.Y., 1968, pp. 279-319.

Several surveys

M. Simonovits:

Extremal graph theory, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory II., Academic Press, London, 1983, pp. 161-200.

Here: 3 types of stability arguments

The essence:
The almost extremal items are very similar to the extremal ones.

1. Progressive induction
2. $\mathcal{P}-\mathcal{Q}$-stability
3. Using "Ready-made stability theorems", like Erdős-Sim. or LovÁsz-Sim..
L. LovÁsz and M. Simonovits:

On the number of complete subgraphs of a graph II, Studies in Pure Math. (dedicated to P. Turán) (1983) 458-495 Akadémiai Kiadó+Birkhäuser Verlag.

Progressive Induction

- Induction would be easy but the initial step is difficult
- Extremal sequence $\left(S_{n}\right)$.

Distance function $\Delta\left(S_{n}, \mathcal{P}\right)$, integer.

- Either $S_{n} \in \mathcal{P}$ or there is an $m<n$ for which

$$
\Delta\left(S_{n}, \mathcal{P}\right)<\Delta\left(G_{m}\right)
$$

and $m>\log n$, say.

Conclusion

Then there is an n_{0} such that $S_{n} \in \mathcal{P}$ for $n>n_{0}$.

Success for the Platonic cases

Dodecahedron, Icosahedron

What is the method of $\mathcal{P}-\mathcal{Q}$-stability?

Useful for many graphs and several hard hypergaph problems.

- We wish to optimize $f(n, \mathcal{P})$.

What is the method of $\mathcal{P}-\mathcal{Q}$-stability?

Useful for many graphs and several hard hypergaph problems.

- We wish to optimize $f(n, \mathcal{P})$.

What is the method of $\mathcal{P}-\mathcal{Q}$-stability?

Useful for many graphs and several hard hypergaph problems.

- We wish to optimize $f(n, \mathcal{P})$.

- We find a related property \mathcal{Q}.

What is the method of $\mathcal{P}-\mathcal{Q}$-stability?

Useful for many graphs and several hard hypergaph problems.

- We wish to optimize $f(n, \mathcal{P})$.

- We find a related property \mathcal{Q}.
- We prove that

$$
\max _{n} f(n, \mathcal{P})>\max _{n} f(n, \mathcal{P}-\mathcal{Q})
$$

- Therefore the maximum can be found in \mathcal{Q}.

This is much easier.

Why does Stability help?

In all these examples it is much easier to optimize the number of edges for \mathcal{Q}.

Examples: Critical edge

Theorem (Critical edge)

If $\chi(L)=p+1$ and L contains a color-critical edge, then $T_{n, p}$ is the (only) extremal for L, for $n>n_{1}$. [If and only if]

Sim., (ERdős)

Complete graphs Odd cycles

GRÖTZSCH GRAPH

The Universe

Extremal problems can be asked (and are asked) for many other object types.

- Mostly simple graphs
- Digraphs
- Multigraphs
- Hypergraphs
- Geometric graph
- Integers
- groups

- other structures
- Integers
- Groups
- Graphs
- Digraphs
- Hypergraphs
- Directed Multihypergraphs

Universe:

We fix some type of structures, like graphs, digraphs, or r-uniform hypergraphs, integers, and a family \mathcal{L} of forbidden substructures, e.g. cycles $C_{2 k}$ of $2 k$ vertices.

A TURÁN-type extremal (hyper)graph problem asks for the maximum number ex (n, \mathcal{L}) of (hyper)edges a (hyper)graph can have under the conditions that it does not contain any forbidden substructures.

The general problem

Given a universe, and a structure \mathbb{A} with two (natural parameters) n and e on its objects G.
Given a property \mathcal{P}.

$$
\operatorname{ex}(n, \mathcal{P})=\max _{n(G)=n} e(G)
$$

Determine ex (n, \mathcal{P}) and describe the EXTREMAL STRUCTURES

Examples: A digraph theorem

We have to assume an upper bound s on the multiplicity. (Otherwise we may have arbitrary many edges without having a K_{3}.) Let $s=1$.

L:

$$
\operatorname{ex}(n, L)=2 \operatorname{ex}\left(n, K_{3}\right) \quad\left(n>n_{0} ?\right)
$$

Many extremal graphs: We can combine arbitrary many oriented double Turán graph by joining them by single arcs.

W. G. Brown, and M. Simonovits:

Extremal multigraph and digraph problems, Paul Erdős and his mathematics, II (Budapest, 1999), pp. 157-203, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.

Examples:

Erdős

Prove that each triangle-free graph can be turned into a bipartite one deleting at most $n^{2} / 25$ edges.

The construction shows that this is sharp if true.
Partial results: ERDŐS-FAUDREE-Pach-Spencer

Erdős-GYőRI-Sim.

Atypical question?

Turán's approach

In which other way can we ensure a large $K_{k} \subseteq G_{n}$?
E.g., if $e\left(G_{n}\right)$ is large?

Later Turán used to say: Ramsey and his theorems are applicable because they are generalizations of the Pigeon Hole Principle.

Turán asked for several other sample graphs L to determine ex (n, L) :

- Platonic graphs: Icosahedron, cube, octahedron, dodecahedron.
- path P_{k}

Dodecahedron Theorem (Sim.)

Dodecahedron: D_{20}

$H(n, d, s)$
For $D_{20}, H(n, 2,6)$ is the (only) extremal graph for $n>n_{0}$.
$\left(H(n, 2,6)\right.$ cannot contain a D_{20} since one can delete 5 points of $H(n, 2,6)$ to get a bipartite graph but one cannot delete 5 points from D_{20} to make it bipartite.)
$H(n, 2,6)$

Example: the Icosahedron

If B contains $a P_{\mathscr{G}}$ then $G_{\boldsymbol{n}}$ contains an icosahedron
The decomposition class is: P_{6}.
In some sense the Icosahedrom problem is different from the others: the stability is missing?

Application in combin. number theory

Erdős (1938):
\rightarrow ErdTomsk
Maximum how many integers $a_{i} \in[1, n]$ can be found under the condition: $a_{i} a_{j} \neq a_{k} a_{\ell}$, unless $\{i, j\}=\{k, \ell\}$?

This lead ERDŐs to prove:

$$
\operatorname{ex}\left(n, C_{4}\right) \leq c n \sqrt{n} .
$$

The first finite geometric construction to prove the lower bound (Eszter Klein)

The primes between 1 and n satisfy Erdős' condition.
Can we conjecture

$$
g(n) \approx \pi(n) \approx \frac{n}{\log n} ?
$$

YES!
Proof idea: If we can produce each non-prime $m \in[1, n]$ as a product:

$$
m=x y, \text { where } x \in X, y \in Y
$$

then

$$
g(n) \leq \pi(n)+\operatorname{ex}_{B}\left(X, Y ; C_{4}\right) .
$$

where $\operatorname{ex}_{B}(U, V ; L)$ denotes the maximum number of edges in a subgraph of $G(U, V)$ without containing an L.

Theorem (ERDŐs)

$$
\mathrm{ex}^{*}\left(n, C_{4}\right) \leq 3 n \sqrt{n}+O(n)
$$

Theorem (ERdős-Kővári-T. Sós-Turán)

$$
\operatorname{ex}(n, K(a, b)) \approx \frac{1}{2} \sqrt[a]{b-1} \cdot n^{2-\frac{1}{a}}+O(n)
$$

Z. Füredi and M. Simonovits:

The history of degenerate (bipartite) extremal graph problems, Erdős Centennial, (2013) pp. 169-264 Springer arXiv

Kővári-T. Sós-Turán theorem

One of the important extremal graph theorems is that of Kővári, T. Sós and Turán,
\rightarrow KovSosTur
solving the extremal graph problem of $K_{2}(p, q)$.
Theorem (Kővári-T. Sós-Turán)
Let $2 \leq p \leq q$ be fixed integers. Then

$$
\operatorname{ex}(n, K(p, q)) \leq \frac{1}{2} \sqrt[p]{q-1} n^{2-1 / p}+\frac{1}{2} p n .
$$

Is the exponent $2-(1 / p)$ sharp?

Conjecture (KST is Sharp)

For every integers p, q,

$$
\operatorname{ex}(n, K(p, q))>c_{p, q} n^{2-1 / p}
$$

Known for $p=2$ and $p=3$: Erdős, RÉnyi, V. T. Sós,

Finite geometric constructions W. G. Brown

Random methods:

	ErdRenyiSos
\rightarrow BrownThom	
\rightarrow	ErdRenyiEvol

$$
\operatorname{ex}(n, K(p, q))>c_{p} n^{2-\frac{1}{p}-\frac{1}{q}}
$$

Füredi on $K_{2}(3,3)$:
Kollár-Rónyai-Szabó: $q>p$!.
Alon-Rónyai-Szabó: $q>(p-1)$!.

The Brown construction is sharp. Commutative Algebra constr.

Unknown:

- Missing lower bounds: Constructions needed
- "Random constructions" do not seem to give the right order of magnitude when \mathcal{L} is finite
We do not even know if

$$
\frac{\operatorname{ex}(n, K(4,4))}{n^{5 / 3}} \rightarrow \infty
$$

- Partial reason for the bad behaviour:

Lenz Construction

Degenerate problems

Given a family \mathcal{L} of forbidden graphs,

$$
\operatorname{ex}(n, \mathcal{L})=o\left(n^{2}\right)
$$

if and only if there is a bipartite graph in \mathcal{L}.
Moreover, if $L_{0} \in \mathcal{L}$ is bipartite, then

$$
\operatorname{ex}(n, \mathcal{L})=O\left(n^{2-2 / v\left(L_{0}\right)}\right)
$$

Proof. Indeed, if a graph G_{n} contains no $L \in \mathcal{L}$, then it contains no L_{0} and therefore it contains no $K_{2}\left(p, v\left(L_{0}\right)-p\right)$, yielding an $L \subseteq G_{n}$.

Supersaturated Graphs: Degenerate

Prove that if

$$
E=e\left(G_{n}\right)>c_{0} n^{2-(1 / p)}
$$

then the number of $K_{p, q}$'s in G_{n}

$$
\# K(p, q) \geq c_{p, q} \frac{E^{p q}}{n^{2}}
$$

The meaning of this is that an arbitrary G_{n} having more edges than the (conjectured) extremal number, must have - up to a multiplicative constant, - at least as many $K_{p, q}$ as the corresponding random graph,
see conjectures Erdős and Sim. and of Sidorenko

Supersaturated, Non-Degenerate

If

$$
e\left(G_{n}\right)>\operatorname{ex}(n, L)+c n^{2}
$$

then G_{n} contains $\geq c_{L} n^{v(L)}$ copies of L
This extends to multigraphs, hypergraphs, directed multihypergraphs.
Brown-Simonovits
\rightarrow BrownSimDM

Bondy-Simonovits

Theorem (Even Cycle: $C_{2 k}$) ex $\left(n, C_{2 k}\right) \leq c_{1} k n^{1+(1 / k)}$.

Conjecture (Sharpness)
Is this sharp, at least in the exponent? The simplest unknown case is C_{8},

It is sharp for C_{4}, C_{6}, C_{10}
Could you reduce k in $c_{1} k n^{1+(1 / k)}$?
YES: Boris Bukh and Zilin Jiang: basically: $k \rightarrow \sqrt{k \log k}$

An annoying open problem

Conjecture (General, even cycles)
For some $c_{k}>0, \operatorname{ex}\left(n, C_{2 k}\right)>c_{k} n^{1+(1 / k)}$.
Weakening:
Conjecture (Just for the octogon)
For some $c_{4}>0 \mathrm{ex}\left(n, C_{8}\right)>c_{4} n^{5 / 4}$.
Weakening, other direction:

Conjecture (For Θ-Graphs)

Given a k, there exists an $t=t(k)$ For which some $c_{k}>0$ $\operatorname{ex}\left(n, \Theta_{k, t}\right)>c_{k} n^{1+\frac{1}{k}}$.

Sketch of the proof of Bondy-Simonovits: (???)

Lemma
If D is the average degree in G_{n}, then G_{n} contains a subgraph G_{m} with

$$
d_{\min }\left(G_{m}\right) \geq \frac{1}{2} D \text { and } m \geq \frac{1}{2} D
$$

- So we may assume that G_{n} is bipartite and regular. Assume also that it does not contain shorter cycles either.

Cube-reduction

Theorem (Cube, Erdős-Sim.)

$$
\operatorname{ex}\left(n, Q_{3}\right)=O\left(n^{8 / 5}\right)
$$

New Proofs: Pinchasi-Sharir, FÜredi, ...

The cube is obtained from C_{6} by adding two vertices, and joining two new vertices to this C_{6} as above.

- We shall use a more general definition: $L(t)$.

General definition of $L(t)$:

- Take an arbitrary bipartite graph L and $K(t, t)$. 2-color them!
- join each vertex of $K(t, t)$ to each vertex of L of the opposite color

Theorem (Reduction, Erdős-Sim.)

Fix a bipartite L and an integer t. If $\mathrm{ex}(n, L)=n^{2-\alpha}$ and $L(t)$ is defined as above then $\operatorname{ex}(n, L(t)) \leq n^{2-\beta}$ for

$$
\frac{1}{\beta}-\frac{1}{\alpha}=t
$$

Examples

Open Problem:
Find a lower bound for ex $\left(n, Q_{8}\right)$, better than $c n^{3 / 2}$. Conjectured: $\quad \operatorname{ex}\left(n, Q_{8}\right)>c n^{8 / 5}$.

An Erdős problem: Compactness?

We know that if G_{n} is bipartite, C_{4}-free, then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right)
$$

We have seen that there are C_{4}-free graphs G_{n} with

$$
e\left(G_{n}\right) \approx \frac{1}{2} n^{3 / 2}+o\left(n^{3 / 2}\right) .
$$

Conjecture (ERDős)
Is it true that if $K_{3}, C_{4} \nsubseteq G_{n}$ then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right) ?
$$

This does not hold for hypergraphs (BALOGH) or for geometric graphs (Tardos)

Erdős-Sim., C_{5}-compactness:

If $C_{5}, C_{4} \nsubseteq G_{n}$ then

$$
e\left(G_{n}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+o\left(n^{3 / 2}\right)
$$

Unfortunately, this is much weaker than the conjecture on C_{3}, C_{4} : excluding a C_{5} is a much more restrictive condition.

Degenerate Compactness

Is it true that if \mathcal{L} is a finite family of bipartite graphs then there exists an $L_{0} \in \mathcal{L}$ such that

$$
\frac{\operatorname{ex}(n, \mathcal{L})}{\operatorname{ex}\left(n, L_{0}\right)}
$$

is bounded?

Rational exponents?

Conjecture (Rational exponents, Erdős-Sim.) Given a bipartite graph L, is it true that for suitable $\alpha \in[0,1)$ there is a $c_{L}>0$ for which

$$
\frac{\operatorname{ex}(n, L)}{n^{1+\alpha}} \rightarrow c_{L}>0 \quad ?
$$

Or, at least, is it true that for suitable $\alpha \in[0,1)$ there exist a $c_{L}>0$ and a $c_{L}^{*}>0$ for which

$$
c_{1}^{*} \leq \frac{\operatorname{ex}(n, L)}{n^{1+\alpha}} \leq c_{L} \quad ?
$$

Constructions using finite geometries

$p \approx \sqrt{n}=\operatorname{prime}\left(n=p^{2}\right)$
Vertices of the graph F_{n} are pairs:
Edges: (a, b) is joined to (x, y) if

$$
\begin{aligned}
(a, b) & \bmod p . \\
a c+b x=1 & \bmod p .
\end{aligned}
$$

Geometry in the constructions: the neighbourhood is a straight line and two such nighbourhoods intersect in ≤ 1 vertex.

loops to be deleted most degrees are around \sqrt{n} :

$$
e\left(F_{n}\right) \approx \frac{1}{2} n \sqrt{n}
$$

Finite geometries: Brown construction

Vertices: $(x, y, z) \bmod p$
Edges:

$$
\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}=\alpha .
$$

$$
\operatorname{ex}(n, K(3,3))>\frac{1}{2} n^{2-(1 / 3)}+o(\ldots)
$$

The first missing case

The above methods do not work for $K(4,4)$.
We do not even know if

$$
\frac{\operatorname{ex}\left(n, K_{2}(4,4)\right)}{\operatorname{ex}\left(n, K_{2}(3,3)\right)} \rightarrow \infty
$$

One reason for the difficulty: Lenz construction:
\mathbb{E}^{4} contains two circles in two orthogonal planes:
$\mathcal{C}_{1}=\left\{x^{2}+y^{2}=\frac{1}{2}, z=0, w=0\right\}$ and $\mathcal{C}_{2}=\left\{z^{2}+w^{2}=\frac{1}{2}, x=0, y=0\right\}$
and each point of \mathcal{C}_{1} has distance 1 from each point of \mathcal{C}_{2} : the unit distance graph contains a $K_{2}(\infty, \infty)$.

Examples: Multigraphs, Digraphs, ...

- Brown-Harary: bounded multiplicity: r
- Brown-Erdős-Sim.
$r=2 s$: digraph problems and multigraph problems seem to be equivalent:
- each multigraph problem can easily be reduced to digraph problems
- and we do not know digraph problems that are really more difficult than some corresponding multigraph problem
- Tomsk
- Sidon sequences

Let $r_{k}(n)$ denote the maximum m such that there are m integers $a_{1}, \ldots, a_{m} \in[1, n]$ without k-term arithmetic progression.

Theorem (Szemerédi Theorem)

For any fixed $k r_{k}(n)=o(n)$ as $n \rightarrow \infty$.

History (simplified):

- K. F. Roth: $r_{3}(n)=o(n)$
- Szemerédi
- Fürstenberg: Ergodic proof
- Fürstenberg-Katznelson: Higher dimension
- Polynomial extension, Hales-Jewett extension
- Gowers: much more effective

Erdős on unit distances

Many of the problems in the area are connected with the following beautiful and famous conjecture, motivated by some grid constructions.

Conjecture (P. ERdős)

For every $\varepsilon>0$ there exists an $n_{0}(\varepsilon)$ such that if $n>n_{0}(\varepsilon)$ and G_{n} is the Unit Distance Graph of a set of n points in \mathbb{E}^{2} then

$$
e\left(G_{n}\right)<n^{1+\varepsilon} .
$$

Szemerédi-Ruzsa

$f(n, 6,3)$

Removal Lemma

Originally for K_{3}, RuzSA-SzEMERÉDI

Generaly: through a simplified example:
For every $\varepsilon>0$ there is a $\delta>0$:
If a G_{n} does not contain δn^{10} copies of the Petersen graph, then we can delete εn^{2} edges to destroy all the Petersen subgraphs.

- something similar is applicable in Property testing.

Hypergraph extremal problems

3-uniform hypergraphs: $\mathcal{H}=(V, \mathcal{H})$
$\chi(\mathcal{H})$: the minimum number of colors needed to have in each triple 2 or 3 colors.

Bipartite 3-uniform hypergraphs:

The edges intersect both classes

Three important hypergraph cases

Complete 4-graph, || Fano configuration, || octahedron graph

Conjecture (Turán)

The following structure is the (? asymptotically) extremal structure for $K_{4}^{(3)}$:

For $K_{5}^{(3)}$ one conjectured extremal graph is just the above "complete bipartite" one!

Two important theorems

Theorem (Kővári-T. Sós-Turán)
Let $2 \leq a \leq b$ be fixed integers. Then

$$
\operatorname{ex}(n, K(a, b)) \leq \frac{1}{2} \sqrt[a]{b-1} \cdot n^{2-\frac{1}{a}}+\frac{1}{2} a n .
$$

Theorem (Erdős)

$$
\operatorname{ex}\left(n, K_{r}^{(r)}(m, \ldots, m)\right)=O\left(n^{r-\left(1 / m^{r-1}\right)}\right) .
$$

Prove that ex $(n, \mathcal{L})=o\left(n^{k}\right)$. iff some $L \in \mathcal{L}$ can be k-colored so at each edge meats each of the k colors.

The T. Sós conjecture

Conjecture (V. T. Sós)

Partition $n>n_{0}$ vertices into two classes A and B with $||A|-|B|| \leq 1$ and take all the triples intersecting both A and B. The obtained 3-uniform hypergraph is extremal for \mathcal{F}.

The conjectured extremal graphs: $\mathcal{B}(X, \bar{X})$

If M_{n} is an arbitrary multigraph (without restriction on the edge multiplicities, except that they are nonnegative) and all the 4-vertex subgraphs of M_{n} have at most 20 edges, then

$$
e\left(M_{m}\right) \leq 3\binom{n}{2}+O(n)
$$

Theorem (de Caen and Füredi)

$$
\operatorname{ex}(n, \mathcal{F})=\frac{3}{4}\binom{n}{3}+O\left(n^{2}\right)
$$

The Fano-extremal graphs

Theorem (Main, Füredi-Sim. / Keevash-Sudakov)
If \mathcal{H} is a triple system on $n>n_{1}$ vertices not containing \mathcal{F} and of maximum cardinality, then $\chi(\mathcal{H})=2$.

$$
\Longrightarrow \quad \operatorname{ex}_{3}(n, \mathcal{F})=\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-\binom{\lceil n / 2\rceil}{ 3} .
$$

Stability

Theorem

There exist a $\gamma_{2}>0$ and an n_{2} such that: If $\mathcal{F} \nsubseteq \mathcal{H}$ and

$$
\operatorname{deg}(x)>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2} \text { for each } x \in V(\mathcal{H})
$$

then \mathcal{H} is bipartite, $\mathcal{H} \subseteq \mathcal{H}(X, \bar{X})$.
\rightarrow FureSimFano

Anti-Ramsey theorems

Definition

Given a colouring of the edges of a graph L, we call L totally multicoloured (TMC), if all the edges of L have different colours. For fixed L, an edge-coloured G is TMC if each $L \subseteq G$ is TMC. If G is not TMC, then we call it BadLy coloured. (If G is TMC, we may call it Well-coloured.)

The original version

Given a sample graph L, and $e\left(G_{n}\right)=e$, How many colours X of an edge-colouring of G_{n} ensure at least one TMC-copy of L ?

Notatition: The maximum will be denoted by $\operatorname{AR}(\mathbf{n}, \mathcal{L})$.

Reducing Anti-Ramsey to Extremal

Consider the case when $G_{n}=K_{n}$. If we take one edge from each colour, then we get a graph H_{n} and the condition means that it cannot contain any $L \in \mathcal{L}$. Therefore

$$
\operatorname{AR}(\mathbf{n}, \mathcal{L}) \leq \operatorname{ex}(n, \mathcal{L})
$$

Improvement

For a given \mathcal{L}, denote by \mathcal{L}^{*} the family of the graphs obtained from the graphs $L \in \mathcal{L}$ by deleting an edge $x y$ from L in all the ways and then gluing the pairs of these graphs in all the possible ways by identifying $x y \in L_{i}$ and $x y \in L_{j}$.

Balanced versions, Erdős-TuZA

Given a sample graph L, and $e\left(G_{n}\right)=e$, How many colours X of an edge-colouring of G_{n} ensure at least one TMC-copy of L, if each colour is used "in an even way" ????

Erdős, Tuza: Rainbow subgraphs in edge-colorings of complete graphs. Quo vadis, graph theory?, 81-88, Ann. Discrete Math., 55, North-Holland, Amsterdam, 1993.

A dual Anti-Ramsey problem

Introductory example
Given a graph G_{n} with

$$
e\left(G_{n}\right)=\left[\frac{n^{2}}{4}\right]+1
$$

How many colours are needed to 5-edge-colour each $C_{5} \subset G_{n}$?
The more general version
Given a sample graph L, and graph G_{n} with

$$
e\left(G_{n}\right)=\operatorname{ex}(n, L)+k
$$

How many colours are needed to $e(L)$-edge-colour each $L \subset G_{n}$?

Motivation

- [BEGS]: Burr, Erdős, Graham, Sós
[befgs]: Burr, Erdős, Frankl, Graham, Sós

The problem seems to be very interesting on its own. It emerged in "Theoretical Computer Science". Both [BEgS] and [BEFGS] mention that their motivation actually originated from a question of S. Berkowitz, concerning time-space trade-offs for Turing Machines (models of computation), for which the RuZSA-SzEMERÉDI theorem [RuzsaSzem], yields some estimate but "which is still unresolved." The details can be found in the Appendix of [BEGS].

L	$\operatorname{ex}(n, L)$	$\operatorname{ex}(n, L)+1$	$\operatorname{ex}(n, L)+c n$	$t_{2}(n)+\varepsilon n^{2}$	$\binom{n}{2}-\varepsilon n^{2}$
K_{k}	$t_{k-1}(n)$	$\binom{k}{2}$	$\binom{k}{2}$	$\binom{k}{2}$	misprint?
C_{5}	$t_{2}(n)$	$c n$	$\leq c n \sqrt{n}$	$>c n$	$\leq \frac{c n^{2}}{\log n}$
C_{p} $p=7,9$	$t_{2}(n)$	$c n^{2}$	$c n^{2}$	$c n^{2}$	$c n^{2}$

Table: Values of $\chi_{S}(n, e, L)$ for various graphs and values of n, e
"If we examine the first three rows of Table ??, we see a striking trichotomy: C_{3}, C_{5} and all the other odd cycles behave very differently. For $L=C_{3}, \chi_{S}(n, e, L)$ is very small, and is not hard to determine; for $L=C_{5}, \chi_{S}(n, e, L)$ seems to behave in a complicated and poorly-understood way; for the other odd cycles, $\chi_{S}\left(n, e, C_{k}\right)$ is very large and good estimates are known..."

As we have mentioned, in some sense the problems in [BEGS] are dual to the "original" Anti-Ramsey problems: instead of determining the maximum number of colours without having a TMC copy of L, we are looking for the minimum number of colours making possible that each copy of L is TM-coloured. ${ }^{a}$
> ${ }^{a}$ More precisely, we have a "host" graph U_{n} containing L and we try to determine the maximum number of colours used for U_{n} without getting a TMC copy of L, where U_{n} can be K_{n}, or a random graph $R_{n, p} \ldots$
> [Begs] S. A. Burr, P. Erdős, R. L. Graham, and V. T. Sós,
> Maximal antiramsey graphs and the strong chromatic number, J Graph Theory 13 (1989), 263-282.
S. A. Burr, P. Erdős, P. Frankl, R. L. Graham, and V. T. Sós,

Further results on maximal antiramsey graphs, In Graph Theory, Combinatorics and Applications, Vol. I, Y. Alavi, A. Schwenk (Editors), John Wiley and Sons, New York, 1988, pp. 193-206.

So $L=C_{5}$ seems to be one of the most interesting cases.
Chapter 4 of [BEGS] deals with $L=C_{5}$. It contains four related theorems. We improve those results, find the corresponding exact bounds. Actually, the C_{5}-line of Table ?? is

Theorem 4.1 of [BEGS]. There exists an n_{0} such that if $n>n_{0}$ and $e=\left[\frac{n^{2}}{4}\right]+1$, then

$$
c_{1} n \leq \chi_{S}\left(n, e, C_{5}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+3 .
$$

Theorem (ERDŐS-Sim)

There exists a threshold n_{0} such that if $n>n_{0}$, and a graph G_{n} has $\left[\frac{n^{2}}{4}\right]+1$ edges and we colour its edges so that every C_{5} is 5-coloured, then we have to use at least $\left\lfloor\frac{n}{2}\right\rfloor+3$ colours.

Construction (Upper bound in Theorem 4.1 of [BEGS])
Consider $G_{n} \in \mathcal{T}_{n, 2,1}$, with two colour classes
$\mathbb{A}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{\alpha}\right\}$ and $\mathbb{B}=\left\{b_{1}, \ldots, b_{\beta}\right\}$, where $\alpha=\left\lceil\frac{n}{2}\right\rceil$,
$\beta=\left\lfloor\frac{n}{2}\right\rfloor . G_{n}$ has one special edge $a_{1} a_{2}$, and we colour the edges of
G_{n} by $\left\lfloor\frac{n}{2}\right\rfloor+3$ colours in the following way:

$$
\begin{aligned}
X\left(a_{1} a_{2}\right) & =\overline{0} ; \\
X\left(a_{1} u\right) & =\bar{a}_{1}, \quad \text { if } u \in \mathbb{B} ; \\
X\left(a_{2} u\right) & =\bar{a}_{2} \text { if } u \in \mathbb{B} ; \\
X\left(z b_{t}\right) & =\bar{b}_{t} \text { if } b_{t} \in \mathbb{B} \text { and } z \in \mathbb{A}-\left\{a_{1}, a_{2}\right\} .
\end{aligned}
$$

A slightly more general Construction 3

For each $a_{t} \in \mathbb{A}$ fix a permutation $\pi_{t}: \mathbb{B} \rightarrow \mathbb{B}$ and

$$
\text { colour } a_{t} b_{j} \text { by } \overline{\pi_{t}\left(b_{j}\right)}
$$

Good colourings \longleftrightarrow Truncated Latin Squares.

Theorem (Uniqueness)

There exists an n_{0} such that if $n>n_{0}$ and $e\left(G_{n}\right)=\left[\frac{n^{2}}{4}\right]+1$, then the minimum number of colours, $\left\lfloor\frac{1}{2} n\right\rfloor+3$, to TM-colour all the C_{5} 's of G_{n} is attained only if G_{n} is a TURÁN graph on two classes. and the colouring is described in Construction 3.

Given p, q, ℓ, h, with $p+q=n, p \geq q, \ell \leq\binom{ h}{2}$, consider a complete bipartite graph $G[\mathbb{A}, \mathbb{B}]$, where $\mathbb{A}=\left\{y_{1}, \ldots, y_{p}\right\}, \mathbb{B}=\left\{u_{1}, \ldots, u_{q}\right\}$ and $\mathbb{A}^{*}=\left\{y_{1}, \ldots, y_{h}\right\} \subset \mathbb{A}$. Embed ℓ edges e_{1}, \ldots, e_{ℓ} into $G[\mathbb{A}, \mathbb{B}]$ with endvertices in \mathbb{A}^{*}. Assume that each $y_{t} \in \mathbb{A}^{*}$ is covered by some e_{i}. For each $y_{t} \in \mathbb{A}$ fix a permutation $\pi_{t}: \mathbb{B} \rightarrow \mathbb{B}$. Let G_{h} be the graph defined by the edges e_{1}, \ldots, e_{ℓ}.

1. Colour G_{h} in $\chi_{S I}\left(G_{h}\right)$ colours so that the edges of the same colour are pairwise strongly independent.
2. If $y_{t} \notin V\left(G_{h}\right)$, i.e. $t>h$, then $X\left(y_{t} u_{j}\right)=\overline{\pi_{t}\left(u_{j}\right)}$.
3. Finally,
3.1 for $h=2(\ell=1)$ colour $y_{t} u_{j}$ with \bar{y}_{t} for $t=1,2$;
3.2 For $h=3, \ell=2$, let $G_{h}=P_{3}=y_{1} y_{2} y_{3}$. Then, as an exception, we may connect y_{2} to \mathbb{B} in one colour \bar{y}_{2}, but then any edge between y_{1}, y_{2}, y_{4} and \mathbb{B} are distinct: in case of this exception we use at least $3|\mathbb{B}|+3$ colours.
3.3 for $h \geq 4$ colour $y_{t} u_{j}$ with $\left(\overline{\pi_{t}\left(u_{j}\right)}, t\right)$ for $t=1,2, \ldots, h$.

Results on slightly larger k

Theorem

There exists a function $\vartheta(n) \rightarrow \infty$ such that if
$0<k=\binom{h}{2}<\vartheta(n)$, then the upper bound of Theorem 4.2/ [BEGS] is sharp for $e=\left[\frac{n^{2}}{4}\right]+k$:

$$
\chi_{S}\left(n, e, C_{5}\right)=(h+1)\left\lfloor\frac{n}{2}\right\rfloor+k .
$$

Because of the monotonicity, this implies
Theorem
There exists a function $\vartheta(n) \rightarrow \infty$ such that if
$0<k \leq\binom{ h}{2}<\vartheta(n)$, then for $e=\left[\frac{n^{2}}{4}\right]+k$,

$$
\chi_{S}\left(n, e, C_{5}\right)=(h+1)\left\lfloor\frac{n}{2}\right\rfloor+k+O(\sqrt{k}) .
$$

Let

$$
\binom{h-1}{2}<k \leq\binom{ h}{2}, \quad \text { i.e. } \quad h=\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil
$$

THEOREM 4.2 OF [BEGS]. Let n be large and $e=\left[\frac{n^{2}}{4}\right]+k$.
Define h by (above) Then

$$
\chi_{S}\left(n, e, C_{5}\right) \leq(h+1)\left\lfloor\frac{n}{2}\right\rfloor+k .
$$

To prove this, consider the following construction (see [BEGS])

Construction (Small k)

Let $k \geq 3$. Using the above notations, embed $G_{h}=K_{h}$ into \mathbb{A} of $G[\mathbb{A}, \mathbb{B}]$. Colour each edge of G_{h} by distinct colours $\overline{1}, \overline{2}, \ldots, \bar{k}$. For each $a_{i} \in \mathbb{A}$ fix a permutation $\pi_{i}: \mathbb{B} \rightarrow \mathbb{B}$ and colour $a_{i} b_{j}$ by $\overline{\left(\pi_{i}(j), i\right)}$, for $i=1, \ldots, h$. Further, for $i>h$ colour $a_{i} b_{j}$ by $\overline{\pi_{i}(j)}$.

Proof, First step: Almost bipartite

The first tool will be to count the triangles in G_{n}.

Theorem

Fix an arbitrary (huge) constant $\Omega>0$. Let G_{n} be a graph with
$\chi\left(G_{n}, C_{5}\right) \leq \Omega n$. Then $m\left(C_{3}, G_{n}\right)=o\left(n^{3}\right)$. Further, if $e\left(G_{n}\right)>\left[\frac{n^{2}}{4}\right]-o\left(n^{2}\right)$, then $\rho\left(G_{n}, T_{n}, 2\right)=o\left(n^{2}\right)$, i.e. $V\left(G_{n}\right)$ can be partitioned into two classes \mathbb{A} and \mathbb{B} of sizes $|\mathbb{A}|,|\mathbb{B}|=\frac{1}{2} n+o(n)$, so that every vertex of \mathbb{A} is joined to at most $o(n)$ other vertices of \mathbb{A}, and every vertex of \mathbb{B} is joined to at most $o(n)$ other vertices of \mathbb{B}.

In the next theorem t and d are defined by

$$
e\left(G_{n}\right)=\left(1-\frac{1}{t}\right) \frac{n^{2}}{2} \quad \text { and } \quad d=\lfloor t\rfloor .
$$

Theorem (Lovász-Sim. [LovSimBirk])

Let $C \geq 0$ be an arbitrary constant. There exist positive constants $\delta>0$ and a $C^{\prime}>0$ such that if $0<k<\delta n^{2}$ and G_{n} is a graph with

$$
e\left(G_{n}\right)=e\left(T_{n}, p\right)+k
$$

and

$$
m\left(K_{p}, G_{n}\right)<\binom{t}{p}\left(\frac{n}{p}\right)^{p}+C k n^{p-2}
$$

then there exists a $K_{d}\left(n_{1}, \ldots, n_{d}\right)$ such that $\sum n_{i}=n$, $\left|n_{i}-\frac{n}{d}\right|<C^{\prime} \sqrt{k}$ and G_{n} can be obtained from $K_{d}\left(n_{1}, \ldots, n_{d}\right)$ by changing at most $C^{\prime} k$ edges.

RuZSA-SzEMERÉDI/Removal Lemma

Brown-Erdős-Sós: $f(n, k, \ell)$

Theorem (RuZSA-SZEMERÉDI)

If $\left(G_{n}\right)$ is a graph sequence with o($\left.n^{3}\right)$ triangles, then we can delete $o\left(n^{2}\right)$ edges from the graph to get atriangle-free graph.

Theorem (RuZSA-SZEMERÉDI)
If $\left(H_{n}\right)$ is a sequence of 3-uniform hypergraphs with no 6 vertices defining 3 triangles, then it has at most $o\left(n^{2}\right)$ triangles.

Connection to Ruzsa-Szemerédi

As a tool, we shall need one more result from [BEGS], on the case $L=P_{4}$, which - as we shall see - is strongly connected to the problem of determining $\chi_{S}\left(n, e, C_{5}\right)$.

Theorem 6.3 of [BEGS]. For any $c>0$,

$$
\frac{1}{n} \chi_{s}\left(n, c n^{2}, P_{4}\right) \rightarrow \infty .
$$

In other words, if $e\left(G_{n}\right)$ is a graph with $>c n^{2}$ edges and the edges are coloured so that every P_{4} is 3-coloured, then we use at least $p(c, n) \cdot n$ colours for some function $p(c, n)$ tending to ∞. (This result is strongly connected to the theorem of
RuzSA and Szemerédi [RuzsaSzem].)
The function $p(c, n)$ will play an important role in our proofs.

In fact, the largest value e for which

$$
\chi_{S}\left(n, e, P_{4}\right) \leq n
$$

satisfies

$$
c_{1} f(n, 6,3) \leq e(n) \leq c_{2} f(n, 6,3)
$$

Lemma

If G_{n} contains a vertex x for which $N(x)$ contains $>c n^{2}$ edges, then for some $g_{c}(n) \rightarrow \infty$ we use at least $g_{c}(n) \cdot n$ colours to TM-colour all the pentagons of G_{n}.

Sketch of the proof

1. We show that the neighbourhood of each $x \in V\left(G_{n}\right)$ contains $o\left(n^{2}\right)$ edges.
2. Therefore $m\left(G_{n}, K_{3}\right)=o\left(n^{3}\right)$.
3. Applying Lovász-Sim we get that G_{n} is almost $T_{n} n, 2$.
4. We recursively delete the low-vertex vertices to get a (large) subgraph G_{m} in which the minimum degree is at least, say $n / 3$.
5. We show (in several steps) that the extremal structure is the one described by our constructions, otherwise our G_{n} would need many colours.

Thank for your attention

