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Abstract

A general (rectangular) partition is a partition of a rectangle into
an arbitrary number of non-overlapping subrectangles. This paper
examines vertex colorings using four colors of general partitions where
every subrectangle is required to have all four colors appear on its
boundary. It is shown that there exist general partitions that do not
admit such a coloring. This answers a question of Dimitrov et al.
[3]. It is also shown that the problem to determine if a given general
partition has such a 4-coloring is NP-Complete. Some generalizations
and related questions are also treated.
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1 Introduction

A k-coloring of the vertices of a plane graph (a graph drawn in the plane
with no crossing edges) is polychromatic if on every face all k colors appear
at least once (with the possible exception of the outer face). The polychro-
matic number of a plane graph G is the maximum number k such that G
admits a polychromatic k-coloring; we denote this number by χf (G). For an
introduction to polychromatic colorings see, for example, the introduction of
[1] or [3]. We restrict ourselves to a brief general discussion of this topic and
mention some results. Alon et al. [1] showed that if g is the length of a short-
est face of a plane graph G, then χf (G) ≥ ⌊(3g − 5)/4⌋ (clearly χf (G) ≤ g)
and showed that this bound is sufficiently tight. Mohar and Škrekovski [11],
using the four-color theorem, proved that every simple plane graph admits
a polychromatic 2-coloring. Later Bose et al. [2] proved this result without
the use of the four-color theorem. Horev and Krakovski [8] proved that ev-
ery plane graph of degree at most 3 other than K4 admits a polychromatic
3-coloring. Horev et al. [6] proved that every 2-connected cubic bipartite
plane graph admits a polychromatic 4-coloring. This result is tight, since
any such graph must contain a face of size four.

In a series of papers the following special case was considered. A rectan-
gular partition is a partition of an axis-parallel rectangle into an arbitrary
number of non-overlapping axis-parallel rectangles such that no four rect-
angles meet at a common point. One may view a rectangular partition as a
plane graph whose vertices are the corners of the rectangles and edges are
the line segments connecting these corners. Such a graph always contains
a cycle of length 4, thus χf (G) ≤ 4. Dinitz et al. [4] proved that every
rectangular partition admits a polychromatic 3-coloring.

Before continuing, let us introduce two related coloring notions. We
define a weak rectangle-respecting k-coloring of a rectangular partition as
a k-coloring of the vertices as follows: if k ≤ 4, then for each rectangle
S exactly k colors must appear on the vertices of the boundary of S and if
k ≥ 4, then for each rectangle S at least 4 colors must appear on the vertices
of the boundary of S. Note that in the first case this definition corresponds
exactly with the notion of a polychromatic k-coloring as every rectangular
partition contains a rectangle (i.e. a cycle) with exactly four vertices on its
boundary. Furthermore, we define a strong rectangle-respecting k-coloring
of a rectangular partition as a k-coloring of the vertices as follows: if k ≤ 4,
then for each rectangle S exactly k colors must appear on the corners of S
and if k ≥ 4, then for each rectangle S at least 4 colors must appear on the
corners of S. We remark that the case k = 4 is consistent with both of the
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Figure 1: (a) weak rectangle-respecting 4-coloring and (b) strong rectangle-
respecting 4-coloring of a guillotine-partition

respective cases in both definitions.
Note that a strong rectangle-respecting coloring is necessarily stronger

than a weak rectangle-respecting coloring as the boundary of a rectangle
includes its four corners. Thus, in the case k ≤ 4, a strong rectangle-
respecting k-coloring gives a polychromatic k-coloring. See Figure 1 for
examples.

For k ≥ 4, it is clear that the existence of a weak (resp. strong) rectangle-
respecting k-coloring implies the existence of a weak (resp. strong) rectangle-
respecting (k + 1)-coloring (just ignore additional colors). Furthermore, for
k ≤ 4 the existence of a weak (resp. strong) rectangle-respecting k-coloring
implies the existence of a weak (resp. strong) rectangle-respecting (k − 1)-
coloring. Thus, we should focus our attention on finding weak and strong
rectangle-respecting k-colorings for k as close to 4 as possible.

A rectangular partition obtained by recursively cutting a rectangle into
two subrectangles by either a vertical or a horizontal line is called a guillotine-
partition. Horev et al. [7] proved that every element of this subclass of
rectangular partitions admit a strong rectangle-respecting 4-coloring (and
hence a polychromatic 4-coloring). Recently, Dimitrov et al. [3] proved that
any rectangular partition admits a strong rectangle-respecting 4-coloring,
using a theorem about plane graphs. Moreover, the second author of the
present paper proved a natural generalization of this result for n dimensional
guillotine-partitions [9].

In the above papers the results are restricted to partitions where no
four rectangles are allowed to meet at a common corner. In this case the
strongest possible statement holds and is proved, namely the existence of
a strong rectangle-respecting 4-coloring (i.e. a polychromatic 4-coloring). If
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we allow four rectangles to meet at a common corner in the partition de-
scribed above, then we have a general partition. The notions of weak and
strong rectangle-respecting k-colorings are naturally extendable to this more
general situation. In [3] the authors construct a rectangular partition that
has no strong rectangle-respecting 4-coloring. The authors continue by ask-
ing if every general partition has a weak rectangle-respecting 4-coloring. We
answer this question in the negative by constructing a general partition that
has no weak rectangle-respecting 4-coloring. In fact, the constructed gen-
eral partition is also a guillotine-partition and therefore answers the question
negatively even in this special case.

Theorem 1. There exists a general partition with no weak rectangle-respecting
4-coloring (i.e. no polychromatic 4-coloring).

Furthermore, a simple characterization of weak rectangle-respecting 4-
coloring is unlikely.

Theorem 2. Deciding whether a general partition admits a weak rectangle-
respecting 4-coloring is NP-complete.

The negative answer from Theorem 1 gives rise to the problem of finding
the largest k for which such coloring always exists. We show that such a
coloring with 3 colors always exists. Note that the result of Dinitz et al. [4]
follows.

Proposition 3. Every general partition admits a weak rectangle-respecting
3-coloring (i.e. a polychromatic 3-coloring).

Thus the following proposition answers the remaining cases.

Proposition 4. Every general partition admits a weak rectangle-respecting
5-coloring.

Now let us turn our attention to the remaining questions for strong
rectangle-respecting k-colorings. We show the existence of strong rectangle-
respecting 2- and 6-colorings.

Proposition 5. Every general partition admits a strong rectangle-respecting
2-coloring.

Proposition 6. Every general partition admits a strong rectangle-respecting
6-coloring.
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Note that simple coloring algorithms will follow from the proofs of the
above propositions. The existence of strong rectangle-respecting 3- and 5-
colorings remains unknown.

Problem 7. Does every general partition admit a strong rectangle-respecting
3-coloring?

Problem 8. Does every general partition admit a strong rectangle-respecting
5-coloring?

For simplicity, in the remainder of the paper we will use the terms par-
tition and general partition interchangeably.

2 Weak rectangle-respecting 4-colorings

In this section we consider partitions where four rectangles are allowed to
meet in a common point (i.e. a general partition). We want to find a 4-
coloring of a given partition such that for any face r all four colors appear
on the vertices on the boundary of r. Denote by G the 3 × 3 grid (i.e.
four squares) and by T the partition obtained from a 3× 3 grid by merging
the upper two squares (see Figure 2). When referring to a side of the
partition G or T we mean the set of vertices on the corresponding vertical
or horizontal boundary of the partition (e.g. left, right, upper, lower). (Here
and throughout the paper when we refer to something being colored with
k colors, we mean exactly k distinct colors.) We begin with some simple
observations.

Observation 9. If a weak rectangle-respecting 4-coloring of the 3 × 3 grid
G assigns three colors to the left (resp. upper) side of G, then the same three
colors appear on the right (resp. lower) side of G.

Observation 10. A weak rectangle-respecting 4-coloring of a 3 × 3 grid G
cannot simultaneously assign three colors to the left (or right) and lower (or
upper) sides.

Observation 11. A weak rectangle-respecting 4-coloring of T assigns three
colors to the left side or right side of T . (See Figure 2.)

Let us define a new partition Q as follows: start with a 7 × 7 grid, first
merge the four central squares, then for each side of this new center square
merge the two smaller squares adjacent to that side. In this way we obtain a
partition that contains four copies of G and four rotations of T . See Figure 3
for an illustration of Q.
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Figure 2: The partition T and two different colorings

Claim 12. Let G1 (resp. G2) be the 3×3 grid in the upper-left (resp. upper-
right) corner of Q. A weak rectangle-respecting 4-coloring of the partition
Q must assign three colors to either the upper side of G1 or the upper side
of G2.

Proof. Let G3 (resp. G4) be the 3 × 3 grid in the lower-left (resp. lower-
right) corner of Q (see Figure 3). Assume that neither the upper side of
G1 nor the upper side of G2 are assigned three colors. By Observation 9
neither the lower side of G1 nor the lower side of G2 are assigned three
colors. By Observation 11 the upper sides of G3 and G4 are each assigned
three colors. Finally, by Observation 10 the right side of G3 has two colors
and the left side of G4 has two color. However, now we have colored the
right and left sides of the partition T on the bottom of Q in a way that
contradicts Observation 11.

Note that a similar claim holds for each side of Q as we can simply
rotate Q and follow the proof of Claim 12. Let us define a new partition C
as follows: start with a 3× 3 grid and embed a 7× 7 grid in the upper-right
square, a copy of Q in the upper-left square and a copy of Q in the lower-
right square. See Figure 4 for an illustration. We will show that partition C
has no weak rectangle-respecting 4-coloring thus proving Theorem 1.

Proof of Theorem 1. Let Q1 be the upper-left copy of Q and let Q2 be the
lower-right copy of Q. By applying Claim 12 to Q2 we find 3 consecutive
vertices on the lower side of the 7 × 7 grid with three colors. By applying
Claim 12 to a −90o rotation of Q1 we find 3 consecutive vertices on the right
side of the 7×7 grid with three colors. By application of Observation 9 it is
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Figure 3: The partition Q and subpartitions G1, G2, G3, G4

easy to see that we can find a 3×3 grid in the 7×7 grid that has three colors
on both the lower side and right side. This contradicts Observation 10.

The authors have constructed several other partitions that have no weak
rectangle-respecting 4-coloring. The smallest known construction is made
up of 46 rectangles and has 65 vertices. It would be interesting to find
smaller examples.

We now turn to the proof of Theorem 2. We omit many small details
of the proof as a rigorous proof would be rather lengthy. Our focus will be
to present the main steps from which the interested reader should easily be
able to reconstruct the complete proof.

Proof of Theorem 2. The proof is by reduction from Planar–3SAT which
was proved to be NP-complete by Lichtenstein [10]. We say that a con-
junctive normal form (CNF) is planar if there is a planar bipartite graph
with vertex set X, Y such that X is the set of variables and Y is the set of
clauses and there is an edge between a variable x and a clause y if and only
if x is contained in y in the CNF. 1 Planar–3SAT is the decision problem

1In fact Lichtenstein proved a somewhat stronger statement and sometimes this weaker

version is denoted by Planar*–3SAT.
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Figure 4: C, the counterexample proof of Theorem 1

of whether a given planar conjunctive normal form in which every clause
consists of 3 literals is satisfiable or not.

To reduce from Planar–3SAT for a given planar CNF G we must
construct a partition RG that has a weak rectangle-respecting 4-coloring
if and only if G is satisfiable. To do this we will assume we are given G
in its planar graph form (G will simultaneously denote the CNF and its
representation as a planar graph). Then we will build a partition RG that
resembles G in such a way that it will be easy to confirm that RG has a weak
rectangle-respecting 4-coloring if and only if G is satisfiable. The partition
RG will be made up of subpartitions corresponding to the variables and
clauses of G. We will use the term component to refer to a subpartition
of RG that represents a variable or clause of G. The construction of RG

will be split into four parts: “edges”, “clauses”, “variables” and “putting it
together”.

Edges

Let e be an edge in the planar CNF G. In the partition RG we will construct
a subpartition representing e that connects the appropriate clause and vari-
able component. Such a subpartition is called a grid-edge. The grid-edge
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to clause component

to variable component

Figure 5: a grid-edge connecting a clause to a variable

representing e will be an alternating series of vertical and horizontal grids of
width 3 and of appropriate length, one end of a grid-edge will be attached
to a variable component (the variable end) and the other end attached to
a clause component (the clause end). Vertical and horizontal subpartitions
of a grid-edge are connected by a suitable rotation of the partition T as
illustrated in Figure 5. Note that once a grid-edge is fixed between two
subpartitions, we can add an arbitrary number of extra turns within the
grid-edge without disrupting the start or end of the grid-edge. To give us
sufficient freedom to choose the coloring of a grid-edge it will be necessary
to assume that every grid-edge in RG has at least six turns.

Grid-edges allow us to force certain arrangements of colors in two differ-
ent parts of the partition. The following observations are easy consequences
of the observations stated earlier in this section.

Observation 13. Let E be a grid-edge with a weak rectangle-respecting 4-
coloring. If the 3 vertices on the variable end of E are colored with two
colors, then the 3 vertices on the clause end of E are also colored with two
colors.

Note that because grid-edges are not symmetric, Observation 13 is not
true if we exchange the terms variable component and clause component.
It will also be necessary to consider the case when the 3 vertices on the
variable end of a grid-edge are colored with three colors.
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T
∗

Figure 6: a clause component Sc and subpartition T ∗

Observation 14. If E is a grid-edge, then there exists a weak rectangle-
respecting 4-coloring of E such that the 3 vertices on the variable end of E
are colored with three colors and the 3 vertices on the clause end of E are
also colored with three colors.

Moreover, in both observations we can color a grid-edge in such a way
that the clause end can get any (legal) assignment of colors. In particular,
each turn on a grid-edge gives an additional freedom of choice of colors (due
to the T partition). After six such turns we will have sufficient freedom to
choose any assignment. (We omit the proof of this claim; although simple it
involves a lengthy case analysis.) This detail will allow us to avoid potential
conflicts when coloring the entire partition RG.

Clauses

Let c be a clause of the planar CNF G. Every clause has degree 3 in G (i.e.
every clause contains 3 literals). We construct a copy of the subpartition
Sc in Figure 6 for each clause c. In particular, the subpartition Sc will be
connected to each subpartition representing a variable v in c.

Let T ∗ be the subpartition of Sc (Figure 6) consisting of a copy of T
with an extra vertex on the top edge. By examining Figure 6 and applying
Claim 12 and the observations in Section 2 it can be seen that the 3 vertices
on the top of T ∗ must get three colors in a weak rectangle-respecting 4-
coloring of Sc. Furthermore, among the three remaining sides of T ∗ at least
one side must have three colors among its vertices. In particular, any one
side or any two sides or all three sides may have three colors among their
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Figure 7: a part of a variable component

respective 3 vertices. Any of these cases will correspond to the clause being
TRUE.

Ultimately, the left, right and bottom sides of T ∗ will be connected by
grid-edges to variable components (see Figure 8).

Variables

Let v be a variable of the planar CNF G and let the degree (i.e. the number
of clauses that contain v or the complement of v) be d(v). We will construct
a subpartition Sv of RG corresponding to v. The subpartition consists of
d(v) copies of the partition Q. (The subpartitions G1, G2, G3, G4 of Q are
defined in Figure 3.) These copies of Q are arranged in a sequence as shown
in Figure 7. This sequence forces that in a weak rectangle-respecting 4-
coloring of RG either:

Case 1 For every copy of Q in Sv the upper side G1 has three colors and the
upper side of G2 has two colors.

Case 2 For every copy of Q in Sv the upper side of G2 has three colors and
the upper side of G1 has two colors.

The first case will correspond to the variable v being TRUE and the
second case will correspond to v being FALSE. Each copy of a Q in Sv will
correspond to exactly one clause that contains v (or v̄). If v is unnegated
in a clause c then we will attach one end of a grid-edge to the upper side of
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G1 of the appropriate instance of Q and the other end will be attached to
Sc. If v is negated in the clause c then we will attach one end of a grid-edge
to the upper side of G2 of the appropriate instance of Q and the other end
will be attached to Sc.

Putting it together

First let us draw the planar graph G in such a way that all vertices lay
on an nc × nc sized grid for n = |V (G)| and a suitable constant c. Such a
drawing follows easily from any grid representation theorem (see e.g. [5]).
This drawing ensures that the size of the new graph is polynomial in n. Now
replace every variable vertex v of G with Sv, replace every clause vertex c
of G with Sc and replace each edge of G with a grid-edge connecting the
appropriate parts of Sv and Sc. See Figure 8.

To complete the construction of the general partition RG we need to add
rectangles to embed what we have constructed so far in a bounding rect-
angle. Let us not go into the complete details, but this can be done easily.
We must guarantee that these new rectangles can be colored appropriately
regardless of how the grid-edges, clause components and variable compo-
nents are colored. If we partition each new rectangle as in Figure 9 (or a
rotation) we can avoid any potential conflicts. Thus we can ignore these
new rectangles when discussing the colorablity of RG.

Now let us show that the satisfiability of G is equivalent to the exis-
tence of a weak rectangle-respecting 4-coloring for RG. First we assume
that RG has a weak rectangle-respecting 4-coloring and show that G has
a satisfying assignment. Under such a coloring of RG each variable com-
ponent either satisfies Case 1 or Case 2 in the variables section above. If
a variable component Sv satisfies Case 1 then fix v as TRUE in G. If Sv

satisfies Case 2 then fix v as FALSE in G. Let us confirm that such an as-
signment of TRUE/FALSE values satisfies G. In every clause c at least one
literal should be TRUE. Let us assume to the contrary that there is a clause
c with all three literals FALSE. For the sake of simplicity, let us assume
that all three literals in c are unnegated variables (it is easy to modify the
argument if one or more of the literals are negated variables). Therefore, all
three variable components connected by grid-edges to Sc are colored so that
Case 2 is satisfied. This implies that for each grid-edge E attached to Sc,
the three vertices on the variable end of E are colored with two colors. By
Observation 13 the 3 vertices of the clause end of each grid-edge connected
to Sc are each also colored with two colors. This contradicts the required
coloring of the subpartition T ∗ described in the clauses section. Thus, every
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Figure 8: connecting a clause component to a variable component
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Figure 9: partition and coloring of a rectangle

clause has a true literal and G has a satisfying assignment.
Now we assume that G has a satisfying assignment and show that RG

has a weak rectangle-respecting 4-coloring. If v is assigned TRUE in G, then
color Sv as described in Case 1 in the variables section above. If v is FALSE
in G, then color Sv as described in Case 2. Each variable component can be
colored independently in this way. Furthermore, the coloring of the variable
components determines the arrangement of colors on the variable end of each
grid-edge. Now let us confirm that each clause component can be colored.
Each clause contains a TRUE literal, thus for each clause component there
is a grid-edge connected to it that has three colors on the variable end. By
Observation 14, there is a coloring of this grid-edge such that the clause
end is also colored with three colors. To actually color the three incoming
grid-edges to a clause we must be careful to avoid conflicting colors. This
can be done because of the remark ending the edges section. This completes
the sketch of the proof.

3 Weak rectangle-respecting 3- and 5-colorings

This section is concerned with the proof of Proposition 3 and Proposition 4
i.e. any partition admits a weak rectangle-respecting 3- and 5-coloring.

Consider a partition in the coordinate plane. A partition consists of
axis-parallel rectangles, so this gives a simple ordering of the vertices based
on their two coordinates. In particular, let us arrange vertices from smallest
to largest x coordinate then from largest to smallest y coordinate i.e. from
left to right then top to bottom. We refer to this ordering as the upper-left
order of the vertices.
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Proposition 3. Every general partition admits a weak rectangle-respecting
3-coloring (i.e. a polychromatic 3-coloring).

Proof. Let R be a partition. We will greedily 3-color the vertices of R.
Any vertex v of the partition can have at most one neighbor with smaller
x-coordinate and at most one neighbor with larger y-coordinate. When
coloring R, we will always maintain the property that v is colored with a
color not used by either of these (at most) two neighbors.

Consider the vertices of R to be arranged in upper-left order (as described
above). For each subrectangle of R we will ensure that it has 3 colors on its
boundary after we color the vertex in its lower right corner.

Let v be the pending vertex to be colored. If v has no previously colored
neighbors (i.e. it is the upper-left corner or R), then choose any color for v.

If v has exactly one previously-colored neighbor w then color v with a
color different from w. If v has two previously-colored neighbors, say x and
y, then v, x and y are on the boundary of a common rectangle. Denote this
rectangle by r and note that v is the bottom-right corner of r.

If x and y are colored with different colors then color v with the color
unused by x and y. Thus, the rectangle r will have 3 different colors on its
boundary.

If y and x are colored with the same color then we will color v with
a color different from that used on x and y. But x must have an already
colored neighbor w on the boundary of rectangle r. We maintained the
property that a vertex is colored with a different color from its previously
colored neighbors, thus w and x have different colors. Color v with the color
unused by x and w. Thus, the rectangle r will have 3 different colors on its
boundary.

In this way every rectangle of R will include three different colors among
the vertices on its boundary.

Proposition 4. Every general partition admits a weak rectangle-respecting
5-coloring.

Proof. Let R be a partition. We will 5-color the vertices of R with the
following algorithm. Consider the vertices of R in upper-left order. Let v be
the pending vertex to be colored and (when they exist) let x be the neighbor
to the left of v and y be the neighbor above v. Further, (when they exist)
let Av be the rectangle with v as its lower-right corner and let Bv be the
rectangle with v as its lower-left corner and let w be the neighbor of y (other
than v) in Bv (w may be above y or to the right of y). By the upper-left
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Figure 10: two examples of the pending vertex v

order, each vertex x, y and w is already colored (or does not exist). See
Figure 10 for examples.

We will choose a color for v that is different from:

1. the color of x

2. the color of y

3. the color of w

4. three colors used on the vertices of Av (including the one or two colors
used on x and y)

Note that for condition 4 we must justify the existence of three colors
on Av before v is colored.

Observe that conditions 1 and 2 imply that the coloring of R (as a graph)
is proper and thus each rectangle gets at least 2 colors. Then condition 3
implies that the rectangle Bv gets at least 3 colors, as v, y and w all have
different colors. Furthermore, there exists a vertex v′ (appearing before v
in the upper-left ordering) such that Av = Bv′ and thus before coloring v,
Av is already colored with at least 3 colors. This justifies the statement of
condition 4. Thus, the four conditions imply that the vertices of Av will be
colored with at least 4 colors. For every rectangle C, there exists a vertex c
such that C = Ac and thus every C is colored with at least 4 colors.

For a vertex v, the four conditions forbid at most four colors for v and
thus 5 colors are enough to complete the coloring of R.
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Figure 11: orientation of edge xy

4 Strong rectangle-respecting colorings

In this section we either want to find the minimal number k ≥ 4 or maximal
number k < 4 of colors such that every partition can be colored with k colors
such that min{k, 4} colors appear on the 4 corners of every rectangle of the
partition.

Proposition 5. Every general partition admits a strong rectangle-respecting
2-coloring.

Proof. For a given partition R let us color the vertices in upper-left order
with two colors. Let v be the pending vertex to be colored. Only vertices
above and to the left of v are already colored. Thus, only the rectangle that
has v in its lower right corner may have three previously colored corners.
If the three previously colored corners have the same color, then choose
the other color for v. Otherwise choose any color for v. After coloring all
vertices in this way clearly no rectangle will have a single color among its
four corners.

A simple greedy algorithm similar to those used for weak rectangle-
respecting 5-colorings shows that for a partition there is always a strong
rectangle-respecting 7-coloring. However, with a little extra care, we can do
better.

Proposition 6. Every general partition admits a strong rectangle-respecting
6-coloring.

Proof. For a given partition R, let G be the graph with the vertex set of
R, where xy is an edge of G if and only if x and y are corners of the same
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rectangle in R. Clearly, the proposition is proved if we can find a proper
6-coloring of G. First we will color the vertices where four rectangles meet.
We use a greedy algorithm with the vertices in upper-left order. Every
vertex has at most four previously colored neighbors, hence six colors are
(more than) enough to properly color such vertices.

Denote by W the set of all so-far uncolored vertices of R. A vertex in
W is the corner of at most two rectangles, thus has degree at most six in
the graph G. Let W ′ ⊂ W be the set of vertices of degree 6. A vertex
x ∈ W ′ must be the corner of exactly two rectangles that do not share a
second corner. Hence x has two neighbors lying on a common line segment
starting from x (see Figure 11). Denote the closer of these two neighbors
by y. Observe that y must be the corner of exactly two rectangles. Now for
every such pair x and y direct the edge xy in G from x to y. Note that this
procedure will never direct y to x. Thus all vertices in W ′ have outdegree
exactly one.

Let us first color the vertices of W ′ with indegree zero. Let x ∈ W ′

be a vertex with indegree zero. The vertex x has outdegree one, so x has
an uncolored neighbor, thus there is an available color for x. Color x with
an available color and remove x from W ′. Repeat this step until no vertex
with indegree zero remains in W ′. Now every vertex in W ′ has outdegree
and indegree equal to 1. Therefore the remaining vertices of W ′ can be
partitioned into directed cycles. The vertices on a directed cycle in W ′ have
at most 4 previously colored neighbors, so each vertex has a list of at least
two available colors.

If we examine these cycles in R it is clear that the edges must alternate
between vertical and horizontal orientation. Thus these directed cycles are
of even length. The list-chromatic number of an even cycle is 2, hence
each cycle can be colored properly. Now all vertices in W ′ are colored. The
remaining uncolored vertices in G are the vertices of W −W ′. These vertices
have degree at most 5 and thus all have an available color.
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