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5 A. Rényi Institute of Mathematics, Budapest

Abstract. We show that every finite connected graph G with maximum
degree three and with at least one vertex of degree smaller than three has
a straight-line drawing in the plane satisfying the following conditions.
No three vertices are collinear, and a pair of vertices form an edge in G

if and only if the segment connecting them is parallel to one of the sides
of a previously fixed regular pentagon. It is also proved that every finite
graph with maximum degree three permits a straight-line drawing with
the above properties using only at most seven different edge slopes.

1 Introduction

A drawing of a graph G is a representation of its vertices by distinct points in the
plane and the edges by continuous arcs connecting the corresponding endpoints,
not passing through any other point corresponding to a vertex. In a straight-line

drawing [8], the edges are represented by (possibly crossing) segments. If it leads
to no confusion, we make no notational or terminological distinction between
the vertices (edges) of G and the points (arcs) representing them.

There are several widely known parameters of graphs measuring how far G
is from being planar. For instance, the thickness of G is the smallest number of
its planar subgraphs whose union is G [14]. The geometric thickness of G is the
smallest number of crossing-free subgraphs of a straight-line drawing of G, whose
union is G [11]. The slope number of G is the minimum number of distinct edge
slopes in a straight-line drawing of G [16]. It follows directly from the definitions
that the thickness of any graph is at most as large as its geometric thickness,
which, in turn, cannot exceed its slope number. For many interesting results
about these parameters, consult [3, 6, 4, 5, 7, 9, 12, 15].

The slope parameter of a graph was defined by Ambrus, Barát, and P. Hajnal
[1], as follows. By abusing the usual terminology, we say that the slope of a line
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ℓ in the xy-plane is the smallest angle α ∈ [0, π) such that ℓ can be rotated into
a position parallel to the x-axis by a clockwise turn through α. Given a set of
points P in the plane and a set of slopes Σ, define G(P, Σ) as the graph on the
vertex set P , in which two vertices p, q ∈ P are connected by an edge if and
only if the slope of the line pq belongs to Σ. The slope parameter s(G) of G is
the size of the smallest set of slopes Σ such that G is isomorphic to G(P, Σ)
for a suitable set of points P in the plane. This definition was motivated by the
fact that all connections (edges) in an electrical circuit (graph) G can be easily
realized by the overlay of s(G) finely striped electrically conductive layers.

The slope parameter, s(G), is closely related to the three other graph param-
eters mentioned before. For instance, for triangle-free graphs, s(G) is at least as
large as the slope number of G, the largest of the three quantities above. On
the other hand, it sharply differs from them in the sense that the slope param-
eter of a complete graph on n vertices is one, while the thickness, the geometric
thickness, and the slope number of Kn tend to infinity as n → ∞. Jamison [10]
proved that the slope number of Kn is n.

Any graph G of maximum degree two splits into vertex disjoint cycles, paths,
and possibly isolated vertices. Hence, for such graphs we have s(G) ≤ 3. In
contrast, as was shown by Barát et al. [2], for any d ≥ 5, there exist graphs of
maximum degree d, whose slope parameters are arbitrarily large.

A graph is said to be cubic if the degree of each of its vertices is at most
three. A cubic graph is subcubic if each of its connected components has a vertex
of degree smaller than three.

The aim of this note is to prove

Theorem 1. Every cubic graph has slope parameter at most seven.

We will refer to the angles iπ/5, 0 ≤ i ≤ 4, as the five basic slopes. In Sect.
2, we prove the following statement, which constitutes the first step of the proof
of Theorem 1.

Theorem 2. Every subcubic graph has slope parameter at most five. Moreover,

this can be realized by a straight-line drawing such that no three vertices are on

a line and each edge has one of the five basic slopes.

Using the fact that in the drawing guaranteed by Theorem 2 no three vertices
are collinear, we can also conclude that the slope number of every subcubic graph
is at most five. In [12], however, it was shown that this number is at most four

and for cubic graphs it is at most five. This was improved for connected cubic
graphs in [13] to four.

2 Proof of Theorem 2

The proof is by induction on the number of vertices of the graph. Clearly, the
statement holds for graphs with fewer than three vertices. Let n be fixed and
suppose that we have already established the statement for graphs with fewer
than n vertices. Let G be a subcubic graph of n vertices. We can assume that G
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is connected, otherwise we can draw each of its connected components separately
and translate the resulting drawings through suitable vectors.

To obtain a drawing of G, we have to find proper locations for its vertices. At
each inductive step, we start with a drawing of a subgraph of G satisfying the
conditions and extend it by adding a vertex. At a given stage of the procedure,
for any vertex v that has already been added, consider the (basic) slopes of
all edges adjacent to v that have already been drawn, and let sl(v) denote the
set of integers 0 ≤ i < 5 mod 5 for which iπ/5 is such a slope. That is, at
the beginning sl(v) is undefined, then it gets defined, and later it may change
(expand). Analogously, for any edge uv of G, denote by sl(uv) the integer 0 ≤
i < 5 mod 5 for which the slope of uv is iπ/5.

Case 1: G has a vertex of degree one. Assume without loss of generality, that
v is a vertex of degree one, and let w denote its only neighbor. Deleting v from
G, the degree of w in the resulting graph G′ is at most two. Therefore, by the
induction hypothesis, G′ has a drawing meeting the requirements. As w has
degree at most two, there is a basic slope σ such that no other vertex of G′ lies
on the line ℓ of slope σ that passes through w. Draw all five lines of basic slopes
through each vertex of G′. These lines intersect ℓ in finitely many points. We
can place v at any other point of ℓ, to obtain a proper drawing of G.

From now on, assume that G has no vertex of degree one.

Case 2: G has no cycle that passes through a vertex of degree two. Since G
is subcubic, it contains a vertex w of degree two such that G is the union of
two graphs, G1 and G2, having only vertex w in common. Both G1 and G2 are
subcubic and have fewer than n vertices, so by the induction hypothesis both of
them have a drawing satisfying the conditions. Translate the drawing of G2 so
that the points representing w in the two drawings coincide. Since w has degree
one in both G1 and G2, by a possible rotation of G2 about w through an angle
that is a multiple of π/5, we can achieve that the two edges adjacent to w are
not parallel. By scaling G2 from w, if necessary, we can also achieve that the
slope of no segment between a vertex of G1 \w and a vertex of G2 \w is a basic
slope. Thus, the resulting drawing of G meets the requirements.

Case 3: G has a cycle passing through a vertex of degree two. If G itself is a
cycle, we can easily draw it. If it is not the case, let C be a shortest cycle which
contains a vertex of degree two. Let u0, u1, . . . , uk denote the vertices of C, in
this order, such that u0 has degree two and u1 has degree three. The indices
are understood mod k + 1, that is, for instance, uk+1 = u0. It follows from the
minimality of C that ui and uj are not connected by an edge of G whenever
|i − j| > 1.

Since G \ C is subcubic, by assumption, it permits a straight-line drawing
satisfying the conditions. Each ui has at most one neighbor in G\C. Denote this
neighbor by ti, if it exists. For every i for which ti exists, we place ui on a line
passing through ti. We place the ui’s one by one, “very far” from G\C, starting
with u1. Finally, we arrive at u0, which has no neighbor in G \ C, so that it
can be placed at the intersection of two lines of basic slope, through u1 and uk,
respectively. We have to argue that our method does not create “unnecessary”
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edges, that is, we never place two independent vertices in such a way that the
slope of the segment connecting them is a basic slope. In what follows, we make
this argument precise.

u u
u
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ui-1

ui

ui-1

i

Fig. 1. The four possible locations of ui.

We determine the locations of u0, u1, . . . , uk by using the below described
Procedure(G, C, u0, u1, x), where G is our subcubic graph, C is the shortest
cycle passing through a vertex of degree two, u0 is such a vertex, u1 is a neigh-
bor of u0 on C, whose degree is three, and x is a real parameter. Note that
Procedure(G, C, u0, u1, x) is a nondeterministic algorithm, as we have more
than one choice at certain steps. (However, it is very easy to make it determin-
istic.)

Procedure(G, C, u0, u1, x)

– Step 0. Since G \ C is subcubic, it has a representation with the five basic
slopes. Take such a representation, scaled and translated in such a way that
t1 (which exists since the degree of u1 is three) is at the origin, and all other
vertices are within unit distance from it.
For any i, 2 ≤ i ≤ k, for which ui does not have a neighbor in G\C, let ti be
any unoccupied point closer to the origin than 1, such that the slope of none
of the lines connecting ti to t1, t2, . . . ti−1 or to any other already embedded
point of G \ C is a basic slope.

For any point p and for any i mod 5, let ℓi(p) denote the line with ith basic
slope, iπ/5, passing through p. Let ℓi stand for ℓi(O), where O denotes the origin.

We will place u1, . . . , uk recursively, so that uj is placed on ℓi(tj), for a
suitable i. Once the position of uj has already been fixed on some ℓi(tj), define
ind(uj), the index of uj , to be i. (Again, the indices are taken mod 5. Thus, for
example, |i − i′| ≥ 2 is equivalent to saying that i 6= i′ and i 6= i′ ± 1 mod 5.)
Start with u1. The degree of t1 in G \C is at most two, so that at the beginning
the set sl(t1) (defined in the first paragraph of this section) has at most two

elements. Let l /∈ sl(t1). Direct the line ℓl(t1) arbitrarily, and place u1 on it at
distance x from t1 in the positive direction. (According to this rule, if x < 0,
then u1 is placed on ℓl(t1) at distance |x| from t1 in the negative direction.)
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Suppose that u1, u2, . . ., ui−1 have been already placed and that ui−1 lies on
the line ℓl(ti−1), that is, we have ind(ui−1) = l.

– Step i. We place ui at one of the following four locations (see Fig. 1):
(1) the intersection of ℓl+1(ti) and ℓl+2(ui−1);
(2) the intersection of ℓl+2(ti) and ℓl+3(ui−1);
(3) the intersection of ℓl−1(ti) and ℓl−2(ui−1);
(4) the intersection of ℓl−2(ti) and ℓl−3(ui−1).
Choose from the above four possibilities so that the edge uiti is not parallel
to any other edge already drawn and adjacent to ti, i.e., before adding the
edge uiti to the drawing, sl(ti) did not include sl(uiti).

It follows directly from (1)–(4) that the edge uiui−1 is not parallel to any
other edge already drawn and adjacent to ui−1. That is, before adding the edge
uiui−1 to the drawing, we had sl(uiui−1) /∈ sl(ui−1). Avoiding for uiti the slopes
of the edges already incident to ti, leaves available two of the choices (1), (2),
(3), (4). Some simple geometric calculations show that, for any possible location
of ui, we have

1.6Oui−1−4 < 2 cos
(π

5

)

Oui−1−4 < Oui < 2 cos
(π

5

)

Oui−1+4 < 1.7Oui−1+4.

Thus, if |x| ≥ 50, then we obtain by induction that

1.5Oui−1 < Oui. (1)

Here, we used that x − 1 < Ou1 and that, by the induction hypothesis, Ouj is
strictly increasing for j < i, therefore, we have x − 1 < Oui−1.

We have to verify that the above procedure does not produce “unnecessary”
edges, that is, the following statement is true.

Claim 1. Suppose that |x| ≥ 50.
(i) The slope of uiuj is not a basic slope, for any j < i − 1.
(ii) The slope of uiv is not a basic slope, for any v ∈ V (G \ C).

Proof. (i) Suppose that the slope of uiuj is a basic slope for some j < i− 1. By
repeated application of inequality (1), we obtain that Oui > 1.5i−jOuj > 2Ouj .
On the other hand, if uiuj has a basic slope, then easy geometric calculations
show that Oui < 2 cos

(

π
5

)

Ouj + 4 < 2Ouj , a contradiction.
(ii) Suppose for simplicity that tiui has slope 0, i.e., it is horizontal. By the

construction, no vertex v of G \ C determines a horizontal segment with ti, but
all of them are within distance 2 from ti. As Oui > x−1, segment vui is almost,
but not exactly horizontal. That is, we have 0 < |∠tiuiv| < π/5, contradiction.
�

Suppose that Step 0, Step 1, . . . , Step k have already been completed. It
remains to determine the position of u0. We need some preparation.

Claim 2. There exist two integers 0 ≤ l, l′ < 5 with |l − l′| ≥ 2 mod 5 such

that starting the Procedure with ind(u1) = l and with ind(u1) = l′, we can

continue so that ind(u2) is the same.
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Proof. Suppose that the degrees of t1 and t2 in G \C are two, that is, there are
two forbidden lines for both u1 and u2. In the other cases, when the degree of
t1 or the degree of t2 is less than two, or when t1 = t2, the proof is similar, but
simpler. We can place u1 on ℓl(t1) for any l /∈ sl(t1). Therefore, we have three
choices, two of which, ℓα(t1) and ℓβ(t1), are not consecutive, so that |α−β| ≥ 2.

The vertex u2 cannot be placed on ℓm(t2) for any m ∈ sl(t2), so there are
three possible lines for u2: ℓx(t2), ℓy(t2), ℓz(t2), say. For any fixed location of u1,
we can place u2 on at least two of the lines ℓx(t2), ℓy(t2), and ℓz(t2). Therefore,
at least one of them, ℓx(t2), say, can be used for both locations of u1. �

Claim 3. We can place the vertices u1, u2, . . . , uk using the Procedure so that

|ind(u1) − ind(uk)| ≥ 2 mod 5.

Proof. By Claim 2, there are two placements of the vertices of C \ {u0, uk}, de-
noted by u1, u2, . . . , uk−1 and by u′

1, u
′
2, . . . , u

′
k−1

such that |ind(u1)−ind(u′
1)| ≥

2 mod 5, and ind(ui) = ind(u′
i) for all i ≥ 2. That is, we can start placing the

vertices on two nonneighboring lines so that from the second step of the Pro-

cedure we use the same lines. We show that we can place uk such that u1 and
uk, or u′

1 and uk are on nonneighboring lines. Having placed uk−1 (or u′
k−1), we

have four choices for ind(uk). Two of them can be ruled out by the condition
ind(uk) /∈ sl(tk). We still have two choices. Since u1 and u′

1 are on nonneighbor-
ing lines, there is only one line which is neighboring of both of them. Therefore,
we still have at least one choice for ind(uk) such that |ind(u1)− ind(uk)| ≥ 2 or
|ind(u′

1) − ind(uk)| ≥ 2. �

– Step k + 1. Let i = ind(u1), j = ind(uk), and assume, by Claim 3, that
|i − j| ≥ 2 mod 5. Consider the lines ℓi−1(u1) and ℓi+1(u1). One of them,
ℓi+1(u1), say, does not separate the vertices of G \C from uk, the other one
does.
Place u0 at the intersection of ℓi+1(u1) and ℓi(uk).

u1 1

u uk+1uk+1u
ku

uk

uk+1uuk

u
u1 u1

uk
uk+1

u0

0

0 0

Fig. 2. The four possible locations of u0.

Claim 4. Suppose that |x| ≥ 50.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.

(ii) The slope of u0v is not a basic slope, for any v ∈ V (G \ C).
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Proof. (i) Denote by uk+1 the intersection of ℓi+1(O) and ℓi(uk). Suppose that
the slope of u0uj is a basic slope for some 1 < j < k. As in the proof of Claim 1,
by repeated application of inequality 1, we obtain that Ouk+1 > 1.5k+1−jOuj >
2Ouj . On the other hand, by an easy geometric argument, if the slope of u0uj is
a basic slope, then Ouk+1 < 2 cos

(

π
5

)

Ouj +4 < 2Ouj , a contradiction, provided
that |x| ≥ 50.

(ii) For any vertex v ∈ G\C, the slope of the segment u0v is strictly between
iπ/5 and (i + 1)π/5, therefore, it is not a basic slope. See Fig. 2. This concludes
the proof of the claim and hence Theorem 2. �

3 Proof of Theorem 1

First we note that if G is connected, then Theorem 1 is an easy corollary to
Theorem 2. Indeed, delete any vertex, and then put it back using two extra
directions. If G is not connected, the only problem that may arise is that these
extra directions can differ for different components. We will define a family
of drawings for each component of G, depending on a parameter ε, and then
choose the values of these parameters in such a way that the extra directions
will coincide.

Suppose that G is a cubic graph. If a connected component is not 3-regular
then, by Theorem 2, it can be drawn using the five basic slopes. If a connected
component is a complete graph K4 on four vertices, then it can also be drawn
using the basic slopes. For the sake of simplicity, suppose that we do not have
such components, ie. each connected component G1, . . . , Gm of G is 3-regular
and none of them is isomorphic to K4.

First we concentrate on G1. Let C be a shortest cycle in G1. We distinguish
two cases.

Case 1: C is not a triangle. Denote by u0, . . . , uk the vertices of C, and let t0
be the neighbor of u0 not belonging to C. Delete the edge u0t0, and let Ḡ be the
resulting graph.

Case 2: C is a triangle. Then every vertex of C has precisely one neighbor that
does not belong to C. If all these neighbors coincide, then G1 is a complete graph
on four vertices, contradicting our assumption. So one vertex of C, u0, say, has
a neighbor t0 which does not belong to C and which is not adjacent to the other
two vertices, u1 and u2, of C. Delete the edge u0t0, and let Ḡ be the resulting
graph.

Observe that in both cases, uk and t0 are not connected in G1. Indeed,
suppose for a contradiction that they are connected. In the first case, G1 would
contain the triangle u0ukt0, contradicting the minimality of C. In the second
case, the choice of u0 would be violated.

There will be exactly two edges with extra directions, u0u1 and u0t0. The
slope of u0u1 will be very close to a basic slope and the slope of u0t0 will be
decided at the end, but we will show that almost any choice will do.
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For any real x and ε > 0, define ModifiedProcedure(Ḡ, C, u0, u1, x, ε),
as follows. Let Steps 0, 1, . . . , k be identical to the corresponding Steps of
Procedure(Ḡ, C, u0, u1, x).

– Step k + 1. If there is a segment, determined by the vertices of G \ C, of
slope iπ/5 + ε or iπ/5 − ε, for any 0 ≤ i < 5, then Stop. In this case, we
say that ε is 1-bad for Ḡ.
Otherwise, when ε is 1-good, let i = ind(u1) and j = ind(uk). We can assume
that |i−j| ≥ 2 mod 5. Consider the lines ℓi−1(u1) and ℓi+1(u1). One of them
does not separate the vertices of G \ C from uk, the other one does.
If ℓi−1(u1) separates G \ C from uk, then place u0 at the intersection of
ℓi+1(u1) and the line through uk with slope iπ/5 + ε. If ℓi+1(u1) separates
G \ C from uk, then place u0 at the intersection of ℓi−1(u1) and the line
through uk with slope iπ/5 − ε.

Since Steps 0, . . . , k are identical in ModifiedProcedure(Ḡ, C, u0, u1, x, ε)
and in Procedure(Ḡ, C, u0, u1, x), the Claims 1, 2, and 3 also hold for the
ModifiedProcedure.

Moreover, it is easy to see that the analogue of Claim 4 also holds with an
identical proof, provided that ε is sufficiently small: 0 < ε < 1/100.

Claim 4’. Suppose that |x| ≥ 50 and 0 < ε < 1/100.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.

(ii) The slope of u0v is not a basic slope, for any v ∈ V (Ḡ \ C). �

Perform ModifiedProcedure(Ḡ, C, u0, u1, x, ε) for a fixed ε, and observe
how the drawing changes as x varies. For any vertex ui of C, let ui(x) denote
the position of ui, as a function of x. For every i, the function ui(x) is linear,
that is, ui moves along a line as x varies.

Claim 5. If ε is 1-good, then with finitely many exceptions, for every value of

x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ.

Proof. Claims 1, 2, 3, and 4’ imply Claim 5 for |x| ≥ 50. Let u and v be two
vertices of Ḡ. Since u(x) and v(x) are linear functions, their difference, uv(x),
is also linear.

If uv is an edge of Ḡ, then the direction of uv(x) is the same for all |x| ≥ 50.
Therefore, it is the same for all values of x, with the possible exception of one
value, for which uv(x) = 0 holds.

If uv is not an edge of Ḡ, then the slope of uv(x) is not a basic slope for any
|x| ≥ 50. Therefore, with the exception of at most five values of x, the slope of
uv(x) is never a basic slope, nor does uv(x) = 0 hold. �

Take a closer look at the relative position of the endpoints of the missing
edge, u0(x) and t0(x). Since t0 ∈ Ḡ\C, t0 = t0(x) is the same for all values of x.
The position of u0 = u0(x) is a linear function of x. Let ℓ be the line determined
by the function u0(x). If ℓ passes through t0, then we say that ε is 2-bad for Ḡ.
If ε is 1-good and it is not 2-bad for Ḡ, then we say that it is 2-good for Ḡ. If ε
is 2-good, then by varying x we can achieve almost any slope for the edge t0u0.



Cubic Graphs Have Bounded Slope Parameter 9

This will turn out to be crucially important, because we want to attain that
these slopes coincide in all components.

Claim 6. Suppose that the values 0 < ε, δ < 1/100 are 1-good for Ḡ. Then at

least one of them is 2-good for Ḡ.

Proof. Suppose, for simplicity, that ind(u1) = 0, ind(uk) = 2, and that u1

and uk are in the right half-plane (of the vertical line through the origin).
The other cases can be settled analogously. To distinguish between Modified-

Procedure(Ḡ, C, u0, u1, x, ε) and ModifiedProcedure(Ḡ, C, u0, u1, x, δ), let
uε

0(x) denote the position of u0 obtained by the first procedure and uδ
0(x) its

position obtained by the second. Let ℓε and ℓδ denote the lines determined by
the functions uε

0(x) and uδ
0(x). Suppose that x is very large. Since, by (1), we

have uk(x)O > 1.5u1(x)O, both uε
0(x) and uδ

0(x) are above the line ℓπ/10. On
the other hand, if x < 0 is very small (i.e., if |x| is very big), both uε

0(x) and
uδ

0(x) lie below the line ℓπ/10. It follows that the slopes of ℓε and ℓδ are larger
than π/10, but smaller than π/5.

Suppose that neither ε nor δ is 2-good. Then both ℓε and ℓδ pass through t0.
That is, for a suitable value of x, we have uε

0(x) = t0. We distinguish two cases.
Case 1: uε

0(x) = t0 = uk(x). Then, as x varies, the line determined by uk(x)
coincides with ℓ2(t0). Consequently, t0 and uk are connected in G1, a contradic-
tion.
Case 2: uε

0(x) = t0 6= uk(x). In order to get a contradiction, we try to de-
termine the position of uδ

0(x). Considering Step k + 1 in both Modified-

Procedure(Ḡ, C, u0, u1, x, ε) and in ModifiedProcedure(Ḡ, C, u0, u1, x, δ),
we can conclude that u1(x) lies on ℓ1(t0), uδ

0(x) lies on ℓ1(u1(x)), therefore,
uδ

0(x) lies on ℓ1(t0). On the other hand, uδ
0(x) lies on ℓδ, and, by assump-

tion, ℓδ passes through t0. However, we have shown that ℓδ and ℓ1(t0) have
different slopes, therefore, uδ

0(x) must be at their intersection point, so we have
uδ

0(x) = uε
0(x) = t0.

Considering again Step k + 1 in ModifiedProcedure(Ḡ, C, u0, u1, x, ε)
and in ModifiedProcedure(Ḡ, C, u0, u1, x, δ), we can conclude that the point
uδ

0(x) = t0 = uε
0(x) belongs to both ℓε(uk(x)) and ℓδ(uk(x)). This contradicts

our assumption that uk(x) is different from uδ
0(x) = t0 = uε

0(x). �

By Claim 5, for every ε < 1/100 and with finitely many exceptions for every
value of x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε) produces a proper drawing
of Ḡ. When we want to add the edge u0t0, the slope of u0(x)t0 may coincide with
the slope of u(x)u′(x), for some u, u′ ∈ Ḡ. The following statement guarantees
that this does not happen “too often”. We use α(u) to denote the slope of a
vector u.

Claim 7. Let u(x) and v(x): R → R2 be two linear functions, and let ℓ(u)
and ℓ(v) denote the lines determined by u(x) and v(x). Suppose that for some

x1 < x2 < x3, the vectors u, v do not vanish and that their slopes coincide, that

is, α(u(x1)) = α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) = α(v(x3)). Then

ℓ(u) and ℓ(v) must be parallel.

Proof. If ℓ(u) passes through the origin, then for every value of x, u(x) has the
same slope. In particular, α(v(x1)) = α(v(x2)) = α(v(x3)). Therefore, ℓ(v) also
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passes through the origin and is parallel to ℓ(u). (In fact, we have ℓ(u) = ℓ(v).)
We can argue analogously if ℓ(u) passes through the origin. Thus, in what follows,
we can assume that neither ℓ(u) nor ℓ(v) passes through the origin.

Suppose that α(u(x1)) = α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) =
α(v(x3)). For any x, define w(x) as the intersection point of ℓ(v) and the line
connecting the origin to u(x), provided that they intersect. Clearly, v(x) = w(x)
for x = x1, x2, x3, and u(x) and w(x) have the same slope for every x. The
transformation u(x) → w(x) is a projective transformation from ℓ(u) to ℓ(v),
therefore, it preserves the cross ratio of any four points. That is, for any x, we
have

(u(x1), u(x2); u(x3), u(x)) = (w(x1), w(x2); w(x3), w(x)) .

Since both u(x) and v(x) are linear functions, we also have

(u(x1), u(x2); u(x3), u(x)) = (v(x1), v(x2); v(x3), v(x)) .

Hence, we can conclude that v(x) = w(x) for all x. However, this is impossible,
unless ℓ(u) and ℓ(v) are parallel. Indeed, suppose that ℓ(u) and ℓ(v) are not
parallel, and set x in such a way that u(x) is parallel to ℓ(v). Then w(x) cannot
have the same slope as u(x), a contradiction. �

Suppose that ε is 2-good and let us fix it. As above, let uε
0(x) be the position

of u0 obtained by ModifiedProcedure(Ḡ, C, u0, u1, x, ε), and let ℓε be the line
determined by uε

0(x).
Suppose also that there exist two independent vertices of Ḡ, u, u′ 6= u0, such

that the line determined by uu
′(x) is parallel to ℓε. Then we say that ε is 3-bad

for Ḡ. If ε is 2-good and it is not 3-bad for Ḡ, then we say that it is 3-good for
Ḡ.

It is easy to see that, for any 0 < ε, δ < 1/100, ℓε and ℓδ are not parallel,
therefore, for any fixed u, u′, there is at most one value of ε for which the line
determined by uu

′(x) is parallel to ℓε. Thus, with finitely many exceptions, all
values 0 < ε < 1/100 are 3-good.

Summarizing, we have obtained the following.

Claim 8. Suppose that ε is 3-good for Ḡ. With finitely many exceptions, for every

value of x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε) gives a proper drawing of

G1. �

Now we are in a position to complete the proof of Theorem 1. Proceed with
each of the components as described above for G1. For any fixed i, let ui

0v
i
0 be

the edge deleted from Gi, and denote the resulting graphs by Ḡ1, . . . , Ḡm. Let
0 < ε < 1/100 be fixed in such a way that ε is 3-good for all graphs Ḡ1, . . . , Ḡm.
This can be achieved, in view of the fact that there are only finitely many values
of ε which are not 3-good. Perform ModifiedProcedure(Ḡi, Ci, ui

0, u
i
1, x

i, ε).
Now the line ℓi determined by all possible locations of ui

0 does not pass through
ti0.

Note that when ModifiedProcedure(Ḡi, Ci, ui
0, u

i
1, x

i, ε) is executed, then
apart from edges with basic slopes, we use an edge with slope rπ/5± ε, for some
integer r mod 5. By using rotations through π/5 and a reflection, if necessary,
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we can achieve that each component Ḡi is drawn using the basic slopes and one
edge of slope ε.

It remains to set the values of xi and draw the missing edges ui
0v

i
0. Since the

line ℓi determined by the possible locations of ui
0 does not pass through ti0, by

varying the value of xi, we can attain any slope for the missing edge ti0u
i
0, except

for the slope of ℓi. By Claim 8, with finitely many exceptions, all values of xi

produce a proper drawing of Gi. Therefore, we can choose x1, x2, . . . , xm so that
all segments ti0u

i
0 have the same slope and every component Gi is properly drawn

using the same seven slopes. Translating the resulting drawings through suitable
vectors gives a proper drawing of G, this completes the proof of Theorem 1.

4 Concluding Remarks

In the proof of Theorem 1, the slopes we use depend on the graph G. However,
the proof shows that one can simultaneously embed all cubic graphs using only
seven fixed slopes.

It is unnecessary to use |x| ≥ 50, in every step, we could pick any x, with
finitely many exceptions.

It seems to be only a technical problem that we needed two extra directions
in the proof of Theorem 1. We believe that one extra direction would suffice.

The most interesting problem that remains open is to decide whether the
number of slopes needed for graphs of maximum degree four is bounded.
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